

FUNCTIONALMATERIALS

SCR-Catalyst Materials for Exhaust Gas Detection

D. Schönauer-Kamin, R. Moos

Motivation

SCR-active materials: V₂O₅-WO₃-TiO₂ and Fe-ZSM5

Motivation SCR-catalyst materials: VWT and Fe-zeolites NH₃-storage and catalytic reactions

catalyst materials as sensors

- © known catalytic behavior
- © given selectivity
- © proven long term stability
- \odot stable in harsh environments
- \Rightarrow detection of C_{qas}
- ⇒ detect the status of the catalyst layer

potentiometric sensors

determination of NH₃-loading

- ⇒ diagnosis of catalyst itself
- ⇒ determination of the amount of stored NH₃ in situ
 - ⇒ radio-frequency technology
 - ⇒ contactless determination of the stored NH₃-amount during operation

SCR-catalyst materials: VWT and Fe-zeolites NH₃-storage and catalytic reactions

catalyst materials as sensors

- © known catalytic behavior
- © given selectivity
- © proven long term stability
- ☺ stable in harsh environments
- \Rightarrow detection of C_{qas}
- ⇒ detect the status of the catalyst layer

potentiometric sensors

determination of γ NH₃-loading

⇒ diagnosis of catalyst itself

- ⇒ determination of the amount of stored NH₃ in situ
 - ⇒ radio-frequency technology
 - ⇒ contactless determination of the stored NH₃-amount during operation

➤ two <u>equal</u> noble metal electrodes: electric conductivity → potential measurement

> porous catalytic active coating of <u>one</u> electrode:

catalytic activity and $\rm NH_3\mathchar`-selectivity long-term stability$

function of SCR-catalyst layer: catalytic properties / adsorption / selectivity

test conditions:

synthetic exhaust gas test bench base gas: 10% O₂, 6.5% CO₂, 2.5% H₂O, N₂ addition of test gas NH₃ (10 – 300 ppm) sensor temperature ~ 550 °C (adjusted by external furnace or platinum heater structure)

IMCS 14th, 22.05.2012, D. Schönauer-Kamin / 5

source: Schönauer, D., Sens. Act.: Chem. 140 (2009) 585-590

Mixed potential NH₃ gas sensor VWT, Au|YSZ|Au

UNIVERSITÄT

BAYREUTH

self-heated @ 550°C base gas: 10% O_2 , 6.5% CO_2 , 7% H_2O , N_2

FM FUNCTIONAL MATERIALS

Mixed potential NH₃ gas sensor Fe-zeolites, Au | YSZ | Au

BAYRFUTH

external-heated @ 550°C base gas: 10% O₂, 6.5% CO₂, 2.5% H₂O, N₂

function of catalyst layer: catalytic properties / adsorption / selectivity

test conditions:

synthetic exhaust gas test bench

base gas: compressed air

addition of test gas SO_2

sensor temperature 500 - 600 °C (adjusted by platinum heater structure)

- sensitivity @ 600°C: 75 – 85 mV / decade SO_2 - sensitivity increases with increasing temperature

source: Izu, N., J. Ceram. Soc. Jpn. 119 (2011) 687-691

IMCS 14th, 22.05.2012, D. Schönauer-Kamin / 9

- stable signals @ 500 and 600 °C

SCR-catalyst materials: VWT and Fe-zeolites NH₃-storage and catalytic reactions

catalyst materials as sensors

- © known catalytic behavior
- © given selectivity
- © proven long term stability
- \bigcirc stable in harsh environments
- \Rightarrow detection of C_{qas}
- \Rightarrow detect the status of the catalyst layer

potentiometric sensors

resistive /

impedimetric sensors

determination of γ NH₃-loading

⇒ diagnosis of catalyst itself

⇒ determination of the amount of stored NH₃ in situ

- ⇒ radio-frequency technology
- ⇒ contactless determination of the stored NH₃-amount during operation

catalyst, heated

Impedimetric NH₃ gas sensor

impedance measurement of

electrical properties:

impedance analyzer

$$f = 10 \text{ MHz} - 1 \text{ Hz}$$

 $U_{\rm eff} = 1 \, \rm V$

function of catalyst layer: sensitive film electrical properties measurement of c_{gas}

test conditions:

synthetic exhaust gas test bench lean base gas: 10% O₂, 6.5% CO₂, 2.5% H₂O, N₂ addition of test gases (NH₃, NO) sensor temperature ~ 300 - 500 °C (adjusted by external furnace or platinum heater structure)

Impedimetric NH₃ gas sensor

Initial Nyquist-Plots at 500 °C

VWT 100/100:

very small tail at low frequencies marginal electrode effects Diameter of semi-circle represents resistance of VWT: - small decrease with c_{NO} addition - strong decrease with increasing $C_{\rm NH3}$

VWT 20/20:

huge semicircle at low frequencies \Rightarrow strong effects at the electrode interface material properties characterized by semicircle *R*: decreases with increasing C_{NH3} almost independent on C_{NO}

Impedimetric NH₃ gas sensor VWT ↔ Fe-ZSM5 @ 500°C

Fe-ZSM5:

small tail at low frequencies: effects at the electrode interface diameter represents resistance of Fe-ZSM5 - almost independent on $c_{\rm NO}$

- decreases with increasing $C_{\rm NH3}$

VWT 20/20:

huge semicircle at low frequencies \Rightarrow strong effects at the electrode interface material properties characterized by semicircle |Z|: decreases with increasing C_{NH3} almost independent on C_{NO}

Au-IDE

functional

alumina substrate

catalyst layer

Impedimetric NH₃ gas sensor

Time dependent impedance records at 500 °C

Au-IDE functional catalyst layer alumina substrate

f in high-frequency semicircle ⇒ material properties

Fe-ZSM5, 600 Hz:

- no response towards NO
- strong NH₃ effect
- \Rightarrow |<u>Z</u>| decreases only with increasing c_{NH3}

VWT, 260 kHz:

- small NO response
- NH₃ effect is more pronounced
- \Rightarrow |*Z*| decreases with increasing c_{NH3} and c_{NO}

NH₃ sensing effect:

- conductivity change due to changes of bulk properties
- NH₃ adsorption on catalyst surface

VWT: NH₃ reacts with adsorbed oxygen species ⇒ n-type semi-conducting behavior Fe-ZSM5: NH₃ adsorbs on acidic sites ⇒ proton conductivity increases

Resistive type SO₂ sensor

function of catalyst layer: sensitive film electrical properties measurement of c_{gas}

test conditions:

synthetic exhaust gas test bench

base gas: compressed air

addition of SO₂

sensor temperature $\sim 300 - 600$ °C (adjusted by platinum heater structure)

Resistive type SO₂ sensor

- R decreases strongly with increasing SO₂ concentration
- semi-logarithmic dependence of S and $c_{\rm SO2}$
- SO_2 detection is possible with Au- and Pt-IDE

SCR-catalyst materials: VWT and Fe-zeolites NH₃-storage and catalytic reactions

catalyst materials as sensors

- © known catalytic behavior
- © given selectivity
- © proven long term stability
- ☺ stable in harsh environments
- \Rightarrow detection of C_{qas}
- ⇒ detect the status of the catalyst layer

potentiometric sensors

determination of NH₃-loading

- ⇒ diagnosis of catalyst itself
- ⇒ determination of the amount of stored NH₃ in situ
 - ⇒ radio-frequency technology
 - ⇒ contactless determination of the stored NH₃-amount during operation

Radio frequency characterization

...material characterization in a cylindrical waveguide

microwave cavity perturbation method

scattering parameters measured by vector network analyzer e.g. reflection coefficient $|S_{11}|$ resonance frequency f_{res} (at minimum of $|S_{11}|$) function of catalyst: catalyst itself is measured in-situ diagnosis of catalyst properties

e.g. NH₃ loading degree

FM FUNCTIONAL MATERIALS

Radio frequency characterization

NH₃ loading of Fe-zeolite catalyst

frequency dependent amplitude of reflection coefficient $|S_{11}|$ ammonia loading \Rightarrow resonance frequencies are reduced \Rightarrow increased damping \Rightarrow electrical losses increase

⇒ ionic conductivity of Fe-zeolite increases due to adsorbed ammonia

source: Reiß, S., Chem. Eng. Technol. 34 (2011) 791-796

RF Iantennas

FUNCTIONALMATERIALS

FM

Radio frequency characterization

NH₃ loading and desorption

Radio frequency characterization characteristic curve

- resonance frequency depends almost linearly on NH₃ loading degree
- changes of electrical properties when NH₃ is adsorbed / stored
 ⇒ in accordance to impedimetric Fe-ZSM5 analysis
- possibility to determine NH₃ loading of the catalyst itself during operation

Conclusions

- SCR-catalysts can be applied for gas sensing application
- Potentiometric devices for NH₃ and SO₂ detection
- Conductometric sensors for NH₃ and SO₂ detection
- Direct electrical characterization of catalyst material
 - ⇒ SCR active materials can be applied as robust and stable functional sensor films
 - ⇒ electrical properties change due to adsorption phenomena, e.g. NH₃ adsorption
 - ⇒ catalytic properties are relevant
- RF technique applicable to SCR-catalyst
 - ⇒ NH₃-loading of the catalyst can be determined in-situ and contactless

SCR-Catalyst Materials for

Exhaust Gas Detection

THANK YOU FOR YOUR ATTENTION!

