

European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability - EuNetAir

CARBON NANOTUBES-BASED GAS SENSORS FOR POLLUTANTS: ELABORATION METHODS FOR NO2 AND BTX DETECTION

NDIAYE Amadou L.

(Co-workers : J. Brunet, A. Pauly, C. Varenne, B. Lauron)

Institut Pascal (IP) - Axe PHOTON Équipe Microsystèmes Capteurs Chimiques Aubière (France)

Institut de Chimie de Clermont Ferrand (ICCF) – UMR 6296 Équipe Matériaux Inorganiques Aubière (France)

In the Framework of COST- Action TD1105 hosted by the SGS 2012 Workshop 14th September 2012, Cracow , Poland

Overview

Plan

1 - Pollutants: introductory view

2 - CNTs-based sensors: Sensors elaboration for NO $_2$ and O $_3$ Detection

- → Dispersion route using a surfactant
- \rightarrow Characterisation of the CNTs-based sensors
- \rightarrow Sensor development and experimental results towards NO₂ and O₃

3 - CNTs-based sensors: Sensors elaboration for BTX Detection:

- → Noncovalent functionalisation method
- → Characterisation of the CNTs-MCs hybrid materials
- → Sensor development and experimental results towards toluene

4 - Conclusion and perspectives

Plan

1 - Pollutants: introductory view

2 - CNTs-based sensors: Sensors elaboration for NO $_2$ and O $_3$ Detection

- Dispersion route using a surfactant
- ightarrow Sensor development and experimental results towards NO₂ and O₃

3 - ChTobased sensers: Sensors elaboration for BTX Detection:

- Oharacterisation of the CNTs-MCs hybrid materials
- Sensor development and experimental results towards toluene

4 - Conclusion and perspectives

1- Pollutants: introductory view

Major Pollutants: NO₂/NO_x , O₃

NO₂ and O₃: Similarities

- → Strong oxidising gases
- \rightarrow Alike molecular masses
- → Chemical reactivities
- \rightarrow Similar interactions with materials

✤ NO₂ and O₃: relationship (in the atmosphere)

 \rightarrow These two gases are linked by a chemical reaction:

NO +
$$O_3 \rightarrow NO_2 + O_2 + hv$$

NO₂ ^{hv} $\rightarrow NO + O$
O* + $O_2 \rightarrow O_3 + hv$

What about Health?

→ Carcinogenic, involved in respiratory deseases, etc.

1- Pollutants: introductory view

What are BTX?

→ Benzene, Toluene and Xylenes:

Where are the BTX from?

para-xylène

 \rightarrow Industries (catalytic reforming, steam cracking etc.), Car exhaust etc.

What about Health?

 \rightarrow Carcinogenic, cause problems in the respiratory system, etc.

NB: the terminology BTEX can be also found in the litterature: BTX + Ethylbenzene

1- Pollutants: introductory view

Gas sensors (literature):

Sensors based on Metal oxide (MOX) thin films:

→ SnO₂ (Lee *et. al*, Sens. and Actuators B, 77, 2001, 228)

Sensors based on porous adsorbent material :

→ Silicate

(Yuliarto *et. al*, Sens. and Actuators B, 138, 2009, 417; Ueno *et. al*, Sens. and Actuators B, 95, 2003, 282)

Sensors based on conducting polymer :

→ Polypyrrole (Wallace *et. al*, Sens. and Actuators B, 84, 2002, 252)

Methodology based on spectroscopic monitoring:

\rightarrow IR, GC-MS

Problems: portability, high cost, space

Sensors based on Nanomaterials: → CNTs

(Kong and Franklin, *et. al*, Science 287, 2000, 622; Penza *et. al*, Sens. and Actuators B, 135, 2008, 289)

Problems: →reproducibility →stability →selectivity → etc.

Plan

2 - CNTs-based sensors: Sensors elaboration for NO₂ and O₃ Detection

- → Dispersion route using a surfactant
- → Characterisation of the CNTs-based sensors
- \rightarrow Sensor development and experimental results towards NO₂ and O₃

3 - CNTs-based sensors: Sensors elaboration for BTX Detection:

- Noncovalent functionalisation method
- Sensor development and experimental results towards toluene

4 - Conclusion and perspectives

CNTs for gas sensors!

Why the CNTs?

Why the dispersion route?

CNTs for gas sensors: Dispersion route using a surfactant Surfactant method (assisted by sonication):

How does it work?

NaDDBs

Hydrophobic and hydrophilic interaction between surfactant + nanotube + water → debundling;

solubilisation / stabilisation in the aqueous phase.

Choice of surfactant?

NaDDBS (Natrium dodecylbenzene sulfonate) seems to be advantageous over others ionic and non-ionic surfactants. (*) **Benzene ring** \rightarrow additional π - π interaction with the CNTs.

* Islam *et. al*, Nano Letters, 3, 2003, 269.

* Sun and Gao et. al, J. Alloys and Compds, 485, 2009, 456.

CNTs for gas sensors: Dispersion route using a surfactant

Preparation of the CNTs dispersion using a surfactant:

CNTs for gas sensors: Dispersion route using a surfactant

Characterisation of the CNTs dispersion :

D and G bands, before and after annealing.

I-V Characteristics

→Ohmic character (resistive sensors)
 →Semiconducting behavior
 (CNTs batch of SC and metallic)

→No observable surfactant effect on the Semiconducting behavior

CNTs for gas sensors: Dispersion route using a surfactant

Sensor development and experimental results towards NO₂ :

Sensor response (70℃)

- ❖ Resistance decrease under NO₂
 → electron withdrawing power of NO₂.
 (p-type semiconducting behaviour of the CNTs)
- Annealing improves the responses
 - ♦ NB: After annealing at 300 °C:
 No valuable responses of the CNTs-based sensors layers?

SEM characterisation of the sensing layers:

CNTs for gas sensors: Dispersion route using a surfactant

Sensor development and experimental results towards O₃:

- ✤ Resistance decrease under O₃
 - \rightarrow oxidising nature of O₃. (p-type semiconducting behaviour of the CNTs)
- Significant baseline up drift (no complete recovery)
- Decreasing sensing performance after some exposure cycles

Plan

1 - Pollutants: Introductory view

- 2 CNTs-based sensors: Sensors elaboration for NO $_2$ and O $_3$ Detection
 - Dispersion route using a surfactant
 - ightarrow Characterisation of the CNTs-based sensors
 - ightarrow Sensor development and experimental results towards NO₂ and O₃

3 - CNTs-based sensors: Sensors elaboration for BTX Detection:

- → Noncovalent functionalisation method
- → Characterisation of the CNTs-MCs hybrid materials
- \rightarrow Sensor development and experimental results towards toluene

Functionalisation of Carbon Nanotubes (CNTs) by Macrocycles (MCs)

Functionalisation of CNTs: covalent vs. noncovalent route

 → covalent functionalisation : based on the creation of covalent bonding
 - more stable assemblies

- irreversible
- solubilisation
- alteration of the properties (electrical, optical etc.)

Campidelli, Torres et al. J.A.C.S. 2008, 130, 11503.

Tassi, Prato et al. Chem. Rev. 2006, 106, 1105.

 \rightarrow noncovalent functionalisation : based on self-assembling (π - π interaction)

- instable assemblies
- reversible

- preserved electrical properties

perylenediimide/SWNT electron donor–acceptor hybrids Hirsch, Guldi *et al. J.A.C.S.* 2011, 133, 4580.

Takeuchi *et al.* J. Phys. Chem. C. 2011, 115, 4533. Yang *et al.* J. Phys. Chem. C. 2011, 115, 4584. Guldi, Prato *et al.* J. Mater. Chem. 2006, 16, 62.

Functionalisation of CNTs: choice of the MCs

Phthalocyanines derivatives

Porphyrines derivatives

- \rightarrow Strong absorption:
- functionalisation monitoring
- \rightarrow R functional groups:
 - solubility
- modulation of the adsorption

→ *π*-system:

- π - π interactions (BTX, CNTs)

Functionalisation of CNTs with a Phthalocyanine derivative: UV-Vis

Evolution of the 679 nm absorption band (Q band) after addition of CNTs

UV-Vis absorption spectra of CNTs/CuPc(^tBu)₄ dispersions

[CuPc^tBu]= 1.785 x 10⁻⁵ M \rightarrow Decrease in absorbance highlights the functionalisation 10ml CHCl₃

Functionalisation of CNTs with Macrocycles: TEM

 \rightarrow Adsorbed structures on the CNTs Walls

→ Noncovalent functionalisation of CNTs (random way)

Functionalisation of CNTs with a Macrocycle: TGA analysis

26 % : MCs weight loss (decomposition)

 \rightarrow a real weight loss of 20.7 % in the CNTs/CuPctBu mainly due to the presence of MC. more easily than free MCs: \rightarrow thermal stability is weaken

Development of the sensing devices: transduction modes

Elaboration of the sensing devices: sensor preparation

Elaboration of the sensing devices: sensor response towards toluene (RT°)

→ Resistance increases during toluene exposure (reducing gas) → Reversible process → Good repeatability

→ Frequency decreases (i.e. Mass increases) under toluene exposure → Reversible process → Good repeatability

∆f= -Cf x ∆m

(Sauerbrey Equation)

∆f: frequency variation (Hz)

Cf: sensitivity factor (Hz/ng/cm²) [Cf= 0.056 Hz/ng/cm² for 5 MHz crystal) Δm : mass variation per unit area (g/cm²)

f f	Materials _{A0} : frequency value at e _{rol} : frequency value at e	equilibrium under Air 0 equilibrium under Air 0	Remarks f: f _{A0} - f _{Tol} → Sensor re	esponse
	SWNTs + CuPctBu CuPctBu	0.009 0.002	Stable, repeatable Moreless stable	
	SWNTs + OEP OEP	0.008 0.0005	Stable, repeatable Not stable	

Better response of CuPctBu compared to OEP: → benzyl moiety

→ amorphous/crystalline

Improvement of the response in the hybrids system (CNTs/MCs) compared to MCs: - CNTs (High SSA)

- CNTs-OEP >>> CNTs- CuPctBu (metal)

Plan

- 2 CNTs-based sensors: Sensors elaboration for NO₂ and O₃ Detection
 - > Dispersion route using a surfactant
 - Characterisation of the CNTs-based sensors
 - ightarrow Sensor development and experimental results towards NO $_2$ and O $_3$
- > CMPstass once Sensers aboration for BTX Decements
 - Noncovalent functionalisation method
 - Characterisation of the CNTs-MCs hybrid materials
 - Sensor development and experimental results towards toluene.

4 - Conclusion and perspectives

4- Conclusion and perspectives

CNTs-based sensors: Sensors elaboration for NO₂ and O₃ Detection

4- Conclusion and perspectives

CNTs-based sensors: Sensors elaboration for BTX Detection

Functionalisation:

- efficient functionalisation way (noncovalent) leading to a better processing of the CNTs and preserving the properties

- choice of the MCs for tailoring the adsorption of BTX:
 - → benzyl moiety
 - \rightarrow metal free
- combination of CNTs and MCs:
 - → higher response (sensitivity increase due to SSA)

Sensors responses:

- low operating temperature (Room Temperature)
- reversible process, good repeatability

□ Gas sensing experiments for the detection of Benzene and Xylenes are under investigations.

□ New phthalocyanine derivatives (Metal free)

Acknowledgement

Projet co-financé par l'Union européenne

L'Europe s'engage en Auvergne avec le Fonds européen de développement régional (FEDER) Institut Pascal (IP) – Axe Photon Équipe Microsystemes capteurs Chimiques

Prof. A. Pauly Dr. J. Brunet (MCF) Dr. C. Varenne (MCF-HDR) B. Lauron (Ing.)

European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability - EuNetAir

European Network on New Sensing Technologies

for Air-Pollution Control and Environmental Sustainab

Institut de Chimie de Clermont-Ferrand (ICCF) Axe Matériaux Inorganiques Équipe Materiaux Fluorés

Prof. M. Dubois Dr. K. Guerin (MCF-HDR) Dr. P. Bonnet (MCF)

Thank you for your attention