European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability - *EuNetAir* - TD1105

Start date: 16/05/2012 End date: 15/05/2016 Year: 2 - Ongoing Action

Construction and Built Environment: Future Horizons

17-19 June 2014, Brussels

Anita Lloyd Spetz

Vice-Chair of COST Action TD1105

Linköping University - Dept. of Physics, Chemistry and Biology / Linköping, SWEDEN

Outline

- Background / Problem Statement:
 - ✓ Scientific context
 - ✓ Challenges addressed by the Action
- MoU Action's Objectives
- Action Research Directions:
 - ✓ Methodology and Innovation
- Working Groups
- Results versus Objectives: Significant Highlights
- Future Plans and Challenges:
 - ✓ Expected Impact & Selected FP7-Projects
- Concluding Remarks

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Scientific context: Air Quality Control (1/2)

European Environment Agency, EEA Report 9/2013

urban population exposed to air pollution exceeding acceptable EU air quality standard

Scientific context: Indoor/Outdoor Energy Efficiency (2/2)

Primary energy consumption in the EU¹ Source: Environmental Protection Agency's National Action Plan for Energy Efficiency Sector Collaborative on Energy Efficiency Hotel Energy Use Profile

¹ O. Seppanen,

11th Conference on Indoor Air Quality

2008, Copenaghen, Denmark

41% Primary Energy consumed in **Buildings**:

- 2/3 in Residential Buildings
- 1/3 in Commercial Buildings

Energy Performance of Buildings EU Directive

EPBD 2010/31/EC

Solar thermal coll.

supply

air

(optional)

triple

pane

double

low-e

Super insulation

extract

air

IAQ by WORLD HEALTH ORGANIZATION

	Indoor Air		Typical S	ubstances	Cure
	Contamination Source	Emission Source	VOCs	Others	
		• Breath	Acetone, Ethano CO ₂ Humidity	l, Isoprene	
		 Skin Respiration & Transpiration 	Nonanal, Decana Humidity	al, α- Pinene	demand
	• Human Reing	• Flatus	Methane, Hydrogen Limonene, Eucalyptol Alcohols, Esters, Limonene		controlled ventilation
	- Human being	Cosmetics			
		 Household Supplies 			
		Combustion	Unburnt Hydroc	arbons	
		(Engines, Appliances,	CO		
9		Tobacco Smoke)	CO ₂ Humidity		
	 Building Material Furniture Office Equipment Consumer Products 	 Paints, Adhesives, Solvents, Carpets 	Formaldehyde, A Aldehydes, Ketoi	lkanes, Alcohols, nes, Siloxanes	permanent 5-10%
		• PVC	Toluene, Xylene,	Decane	ventilation
		 Printers, Copiers, Computers 	Benzene, Styrene	e, Phenole	

Table 1 - Typical Indoor Air Contaminants (VOCs and others)

Challenges addressed by Action TD1105 (1/1)

- Nanomaterials for AQC sensors
- Low-cost Gas Sensors
- Low-power Sensor-Systems
- Wireless Technology (Environmental Sensors Network)
- Air Quality Modelling
- Environmental Measurements
- Standards and Protocols

5

Action's Objectives (1/3)

MoU Main Objectives of COST Action TD1105:

- <u>To establish</u> a <u>Pan-European multidisciplinary R&D platform</u> on new sensing paradigm for Air Quality Control (AQC) contributing to sustainable development, green-economy and social welfare.
- <u>To create</u> collaborative research teams in the ERA on the new sensing technologies for AQC in an integrated approach to avoid fragmentation of the research efforts.
- <u>To train</u> Early Stage Researchers (ESRs) and new young scientists in the field for supporting competitiveness of European industry by qualified human potential.
- <u>To promote</u> gender balance and involvement of ESRs in AQC.
- <u>To disseminate</u> R&D results on AQC towards industry community and policy makers as well as general public and high schools.

Action Research Directions: Methodology (1/1)

DELIVERABLES of COST Action TD1105. MoU areas of S&T cooperation include:

• Workshops on sensor materials and nanotechnologies, sensor-systems for AQC, environmental measurements, air-pollution modelling, chemical weather forecasting, distributed computing, wireless sensor networks, protocols and pre-standardisation; organization of open conferences to improve knowledge transfer and dissemination.

• **Training Schools** on sensor materials, technologies, processes, methods, modelling, forecasting, applications, environmental certification and validation, project management.

• International ESRs exchange and Scientists Mobility (STSMs) between partners involved in Action and Non-COST partnership at incoming/outcoming level.

• **New collaborative research actions** and research projects providing synergies between partners capabilities.

• **Participation** in Conferences, Short Courses, Mutual Publications, Reports, White Papers, Position Papers, etc.

- Outreach activities
- Enforcement of the Gender Balance agenda

 Coordinated Dissemination of the networking activities towards Academia, Industry and General Public. COST Action TD1105 *EuNetAir*: 28 COST Countries (Parties) have already signed Memorandum of Understanding (MoU)

PARTIES: already accepted **MoU: 28 Countries** Austria, Belgium, **Bulgaria**, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Latvia, The Former **Yugoslav Republic** of Macedonia. Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom.

COST Action TD1105 *EuNetAir*: 7 Non-COST Countries and 8 Non-COST Institutions

Non-COST Countries: Australia, Canada, China, Morocco, Russia, Ukraine, USA

Non-COST Institutions: CSIRO (Australia); **University of Waterloo** (Canada); Chinese Academy of Sciences, Shanghai Institute of Ceramics (China); University of Agadir IBN Zohr (Morocco); **National Research Center Kurchatov Institute** (Russia); O.M. Marzeiev Institute for Hygiene and Medical Ecology of Academy of Science of Ukraine (Ukraine); Southern **Illinois University Carbondale, NASA Ames Research Center (USA).**

N IN SCIENCE AND TECHNOLOGY

🚞 AT - Austria	Materials Center Leoben Forschung GmbH EUNetAir PARTICIPANTS
BE - Belgium	VITO, Universitè de Liège, Odometric S.A.
📕 BG - Bulgaria	National Institute of Meteorology and Hydrology - BAS; Institute of Electronics - BAS
CH - Switzerland	Ecole Polytechnique Fèdèrale de Lausanne; e2v Microsensors S.A.; EnvEve S.A.; EMPA
CZ - Czech Rep	Academy of Sciences of the Czech Republic
DE - Germany In Ur	stitute of Energy and Environmental Technology; Saarland University; MPI for Biogeochemistry niv. of Bayreuth; Univ. of Paderborn; Univ. Applied Sci. Ostwestfalen-Lippe; UST; Alfred Becker; 3S
DK - Denmark	Aarhus University; Technical University of Denmark - DTU
EL - Greece	Aristotle University; FORTH; Athena/ISI; University of Piraeus
ES - Spain	Catalonia Institute for Energy Research - IREC; Spanish National Research Council - CSIC; University Rovira i Virgili; University of Barcelona, Worldsensing S.L.
🕂 🕂 FI - Finland	University of Oulu; University of Helsinki; Tampere University of Technology
FR - France	Jniversity of Bourgogne; University Blaise Pascal; Ecole des Mines de Douai; CEA-CNRS; ETHERA
HU - Hungary	Hungarian Meteorological Service
IS - Iceland	Agricultural University of Iceland MK - Republic of Macedonia Ministry of Environment
IE - Ireland	Trinity College Dublin; University College Cork
💌 IL - Israel	AirBase Systems; TECHNION RS- Serbia Institute of Public Health of Belgrade; VINCA
IT - Italy	ENEA; ELETTRA; Univ. of Bari; Univ. of Brescia; Univ. of Trieste; Lenviros; Sensichips, ARPA-Puglia
LV - Latvia	University of Latvia
🔚 NL - Netherland	s IMEC - Holst Centre; ECN
NO - Norway	NILU - Norwegian Institute for Air Research
PL - Poland	Silesian University of Technology; Warsaw University of Life Science
🚺 PT - Portugal	Univ of Coimbra; Instit. of Environment & Development; National Health Institute; Univ of Lisbon
RO - Romania	National R&D Institute for Nonferrous and Rare Metals; SC IPA SA - Research & Development
SE - Sweden	Linkoping University; Chalmers University of Technology; SenSiC AB; SenseAir AB
SI - Slovenia	University of Ljubljana; Aerosol d.o.o.
UK - United k	Kingdom Imperial College London; Newcastle University; University of Manchester; Cambridge; University of Warwick; University of Edinburgh; Cambridge CMOS Sensors; Alphasense
🙆 TR - Turkey	GEBZE Institute of Technology; Middle East Technical University of Ankara

Country	MC Members (52): Male (72%) Eemale (27%)	MC Chair: Mic	hele Penza, ENEA, IT
		MC Vice Chair: Anit	ta Lloyd Spetz, Linkoping University, SE
Austria		Grant Holder: Euri	ce GmbH, Saarbrucken, DE
Belgium	Dr Jan THEUNIS; Dr Anne-Claude ROMAIN	Country	MC Substitutes (30)
Bulgaria	Dr Dimiter SYRAKOV; Dr Ivan NEDKOV	Austria	
Czech Republic	Dr. Vera KURKOVA; Dr. Zdenek ZELINGER	Austria	
Denmark	Prof. Ole HERTEL	Beigium	Dr Julien DELVA
Finland	Prof. Kaarle HAMERI; Prof. Jyrki LAPPALAINEN		Dr. Koman NERUDA
France	Prof. Marcel BOUVET; Prof. Jerome BRUNET	Einland	Dr. Lise Lotte SOKENSEN Prof. Jorma KESKINEN
Germany	Prof. Andreas SCHUETZE; Dr Corinna HAHN		Pr Jean SUISSE
Greece	Prof. George PAPADOPOULOS; Prof. Kostas KARATZAS	MMITI	Prof. Alain PAULY
Hungary	Ms Krisztina LABANCZ; Dr Zita FERENCZI		Dr. Daniela SCHONAUER-KAMIN
Iceland	Dr Arngrimur THORLACIUS	Germany	Dr. Juliane ROSSBACH
Ireland	Dr. Francesco PILLA; Prof. John WENGER	Greece	Prof. George KIRIKIADIS
Israel	Dr. Liad ORTAR; Prof. Hossam HAICK	Uncerte and	Dr. Christos KOULAMAS
Italy	Dr Michele PENZA; Prof. G. SBERVEGLIERI; Dr. G. DE GENNARO		Dr. Roberto SIMMARANO
Latvia	Dr Iveta STEINBERGA	italy	Dr. Marco ALVISI Dr. Saverio DE VITO
Macedonia Rep.	Dr. Igor ATASANOV; Dr. Ljupcho GROZDANOVSKI	Macedonia Rep.	Dr. Beti ANGELEVSKA
Netherlands	Dr Sywert BRONGERSMA; Dr. Ernie WEIJERS	Netherlands	Dr. Rene OTJES
Norway	Dr Nuria CASTELL BALAGUER; Dr. Philipp SCHENEIDER	Poland	Prof. Jacek SZUBER
Poland	Dr Monika KWOKA; Prof. Janislaw GAWRONSKI	Portugal	Dr. Joao Paulo TEIXEIRA
Portugal	Prof. Bernadete RIBEIRO; Prof. Carlos BORREGO	Romania	Dr. Cristina RUSTI
Romania	Dr Marcel IONICA; Dr Roxana Mioara PITICESCU	on 16 May 20	12/7. Marcel Adrian IONICA
Serbia	Dr. Anka CVETKOVIC Kick-off Meeting at Drussere	Sidvenia	
Slovenia	Dr Grisa MOCNIK; Dr Rahela ZABKAR	Spain	Prof. Albert ROMANO-RODRIGUEZ Dr. Jordi LLOSA
Spain	Prof. Juan Ramon MORANTE; Prof. Eduard LLOBET VALERO		Dr Ulf THOLE
Sweden	Prof. Anita LLOYD SPETZ; Prof. Ingrid BRYNTSE	Sweden	Dr. Marina VOINOVA
Switzerland	Dr Danick BRIAND; Dr. Nicolas MOSER	Switzerland	Dr Christoph HUEGLIN
United Kingdom	Dr John SAFFELL; Prof. Roderic JONES		Prof. Julian GARDNER
Turkey	Prof. Zafer ZIYA OZTURK; Prof. Mehmet Fatih DANISMAN	υк	Dr Robin NORTH Prof. Florin UDREA

WG1 PRIORITIES: Sensor Materials and Nanotechnology

 Prof. Juan Ramon Morante, IREC, Barcelona, Spain Prof. Jyrki Lappalainen, University of Oulu, Finland (<i>Rome and Cambridge Meeting WG1 Chair</i>) 		
n: 3 Sub-WG Leaders and 30 Members		
Metal Oxides (MOX) : Thin Films, Nanoparticles, Nanowires, Nanotubes, Nanoneedles, Nanoporous Forms of Materials (ZnO, SnO ₂ , WO ₃ , TiO ₂ , InO _x , NiO, and magnetic materials Fe_3O_4 , doped dielectrics BaSrTiO ₃ , etc.)		
TY #2: Carbon Nano MATerials (CNMAT): Nanotubes, Nanoparticles, Graphene, 1D and 2D-nanostructures and their functionalization and doping		
Molecular, Organic/Inorganic Materials: Heterostructures (semiconductors, polymers) and Schottky junctions		
 Processing of low-cost sensors on flexible substrates: Printing techniques, inkjet printing, spin coating, droplet casting, etc. Template assisted growth of nanostructures 		
Other sensitive materials: biomaterials, enzymes, antibodies, etc.		
Chemical modifications of the sensor materials with tuned properties to address selectivity and specific applications		
Combination of different approaches and defining the state-of-art of the best available technologies, for example, to realize smart sensor structures		

TD1105 EuNetAir WG1: Sensor Materials & Nanotechnologies (2/5)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

WG2 PRIORITIES: Sensors Devices and Sensor-Systems for AQC

WG2-Leader:			Prof. Andreas Schuetze, Saarland University, Germany		
WG2 Composition:		ition:	4 Sub-WG Leaders and 45 Members		
PRIORITY #1: Versatile µ ✓ Allow app ✓ Low pow		Versatile µ ✓Allow app ✓Low powe	-transducers for integration of various nanomaterials : lication specific adaptation and low cost er (down to μW range for single nanowire)		
PRIORITY #2: Dynamic operation higher selectivity a ✓Well-know but no Spectroscopy (EIS ✓New methods: R mass and dissipati ✓Modelling of inter		Dynamic of higher sele ✓Well-know Spectrosco ✓New methe mass and of ✓Modelling	peration of Sensors to gain more than one signal from a single sensor for ctivity and stability as well possible self-monitoring at the sensor module level: w but not yet standard: temperature cycling, Electrical Impedance py (EIS) nods: RF, optical, excitation (gas sensitive solar cell), pulsed polarization, dissipation in Quartz Crystal Microbalance (QCM) of interaction of sensing layer and gas/dust/aerosol		
F	PRIORITY #3:	Selective f	ilters integrated in sensors or sensor modules		
F	PRIORITY #4:	Dosimeter	approach: integrating sensor response		
F	PRIORITY #5:	Nanopartio	cle detection for dust and aerosols		
PRIORITY #6: Intelligent		Intelligent ✓Electronic	Sensor Modules for NO _x , O ₃ , NH ₃ , H ₂ S, SO ₂ , VOC: cs combined with sensor elements		
PRIORITY #7: Intelligent ✓ Data pre- computing) ✓ Energy effects		Intelligent ✓ Data pre- computing) ✓ Energy effects	Sensor Nodes and heterogeneous networks: processing and processing (in node and/or in network: parallel and distributed		

TD1105 *EuNetAir* WG2: Sensors, Devices and Systems for AQC (3/5)

WG2 Chair: Prof. Andreas Schuetze, Saarland University, Germany

Sub-Working Group 2.1:

Gas sensors and new transducers.

Sub-Working Group 2.2:

Portable gas sensor-systems.

Sub-Working Group 2.3:

Wireless technology and AQC sensors network.

Sub-Working Group 2.4:

Intelligence algorithms and networked AQC gas sensors.

distributed computing for

Direct status measurement of automotive catalysts by radio-frequency technique by University of Bayreuth, DE.

FRATION IN SCIENCE AND TECHNOLOGY

Warwick University in collaboration with Cambridge University, EPFL, PennState.

Using pattern matching algorithms, the data is converted into a unique response pattern

A versatile platform for the efficient development of gas detection systems based on automatic device adaptation by University of Saarland.

Low-ppb sensitivity for NO₂ **GaN-based sensor concept**

Autonomous Gas Sensor System by IREC and Univ. of Barcelona

IT PATENT ENEA

Carbon Nanotube Gas Sensor

WG3 PRIORITIES: Environmental Measurements and Air-Pollution Modelling

WG3-Leader:		Prof. Ole Hertel, Aarhus University, Denmark		
WG3 Composition:		3 Sub-WG Leaders and 35 Members		
PRIORITY #1:	Environm ✓ Various sensors in ✓ Sensors ✓ Sensors emissions energy eff ✓ Wireless	IDENTIFY and SET UP: In the life of every day (e.g., bikes, pedestrians, cars, smart cities, etc.) For sir quality monitoring at outdoor applications for air quality monitoring at indoor applications (e.g., green buildings, low CO_2 and s, offices, schools, air-ventilation systems, HVAC devices, open spaces, indoor efficiency, etc.)		
PRIORITY #2:	 Air Quality Modelling: ✓ Air-pollution dispersion modelling at local, urban, regional and global range ✓ Chemical weather forecasting (gases, vapors and particulate matter) 			
PRIORITY #3:	Synergist ✓ Smoke f ✓ Allergen ✓ Airborne ✓ Fungal s ✓ Airborne ✓ Long-rar ✓ Pesticide ✓ Radon 8 ✓ Toxic ga	ic Negative Health Effects of Human Exposure to Air-Pollution: rom domestic wood stoves ic pollen from trees, grasses and new invasive species allergenic material (skin tissue, hair, etc.) released from livestock spores from agriculture and other sectors PM natural sources (sea spray, soil dust) nge transported organic & inorganic PM including agricultural emissions es applied in Europe farming ElectroMagnetic Field (EMF) in domestic buildings ses and VOCs as air-pollutants at indoor and outdoor level		

TD1105 WG3: Environmental Measurements and Air-Pollution Modelling (4/5)

WG3 Chair: Prof. Ole Hertel, Aarhus University, Denmark

• Sub-Working Group 3.1:

Environmental measurements at laboratory and in field air-quality stations.

• Sub-Working Group 3.2:

Air-quality modelling and chemical weather forecasting.

• Sub-Working Group 3.3:

Harmonisation of environmental measurements.

Environmental measurements of PM and air pollution by CSIC, ES

AQ monitoring station by ARPA-PUGLIA, IT

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Mobile and static sensor network configurations by University of Cambridge.

AQ monitoring station by Aarhus University, DK

AQ Modeling: Tracking routes by Aarhus University, DK

AQ monitoring station by Lithuanian EPA

WG4 PRIORITIES: Protocols and Standardisation Methods

WG4-Leader:		Prof. Ingrid Bryntse, SenseAir SA, Delsbo, Sweden	
WG4 Composition:		3 Sub-WG Leaders and 25 Members	
PRIORITY #1:	Odorants: ✓H ₂ S and organic thiols (mercaptans) ✓Odour monitoring		
PRIORITY #2: Particula ✓ PM ₁₀ , F ✓ Black (l ate Matter (PM) : PM _{2.5} , Ultrafine PM Carbon (BC)	
PRIORITY #3:	RIORITY #3: VOC, Indoor Air: \checkmark CH ₂ O methanal (formaldehyde) \checkmark C ₆ H ₆ (Benzene) and other BTX (Benzene, Toluene, Xylene)		
 PRIORITY #4: Inorganic Gases: •NO₂ (nitrogen dioxide) & O₃ (ozone), analysed simultaneously •CO₂ (carbon dioxide) (ventilation indicator and greenhouse gas) 		n ic Gases : hitrogen dioxide) & O ₃ (ozone), analysed simultaneously earbon dioxide) (ventilation indicator and greenhouse gas)	
PRIORITY #5:	5: Aiming at Low-cost Sensors: ✓ Small sensor with simple PCB: €100 (OEM manufacturer price to a customer which use in their system) ✓ Sensor modules: €300		
PRIORITY #6:	Labora	tory and Field Testing at National Accredited Test Laboratories	

TD1105 EuNetAir WG4: Protocols and Standardisation Methods (5/5)

WG4 Chair: Prof. Ingrid Bryntse, SenseAir AB, Sweden

- <u>Sub-Working Group 4.1</u>: Protocols, standards and methods for AQC by analyzers/instruments (nosensors) technologies.
- <u>Sub-Working Group 4.2</u>: Protocols, standards and methods for AQC by sensors (no-analyzers) technologies.
- <u>Sub-Working Group 4.3</u>: Benchmarking of new products and market of commercial AQC sensors.

Battery-Powered Sensors by Alphasense Ltd, UK

Cost

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

European Directive 2008/50/EC: Ambient Air Quality EU standard EN 13725/2003: Dynamic Olfactometry Protocols and Standardised Methods for Gas Sensors Guidelines of Best Transducers applied to specific gases

Packaged Sensors by E2V, CH

Dynamic olfactometry EN13725

by Univ. of Liege, Odometric SA,

Univ. of Bari, Lenviros srl.

Becker Gruppe, DE

CO₂ IR sensor for alarm System by SenseAir **AB**, Sweden

Action TD1105 *EuNetAir*: Working Groups (1/5)

MANAGEMENT COMMITTEE:

CORE-GROUP & STEERING COMMITTEE

- Editorial Board
- Dissemination
- Training Schools
- Gender Balance
- Early Stage Researchers (ESR)
- Short-Term Scientific Mission (STSM)
 - Intellectual Property Rights (IPR)
- Local Organizing Committee (LOC)
- SIG 1: Network of Spin-offs
- SIG 2: Smart Sensors for Urban Air Monitoring in Cities
 - SIG 3: Guidelines for Best Coupling Air Pollutant-Transducer
 - SIG 4: Expert comments for the Revision of the Air Quality EU Directive

EuNetAir INNOVATION on AIR QUALITY MONITORING

by SGX-Sensortech, Switzerland

	COST Action TD1105 ROADMAP (2012-2016)						
	YEAR	Quarter 1	Quarter 2	Quarter 3	Quarter 4		
	1	 <u>M</u>: Kick-Off Meeting. <u>MC Meeting 1</u>. <u>D</u>: MC setup and Action Workplan established 	 <u>M</u>: Editorial Board for Leaflet, Brochure, Newsletter. Action website setup. <u>D</u>: Definition of WGs and WGs Workplans 	<u>M</u> : MC Meeting 2. WGs Meeting 1. <u>D</u> : Scientific activities, ESR/STSM program, Dissemination	<u>M</u> : Workshop 1. Training School 1. State-of-Art on AQC. <u>D</u> : Evaluation and Activity Report. Scientific strategies		
	2	M: MC Meeting 3. WGs Meeting 2. Update Action website. D: Scientific activities. Liason with EU Programs	<u>M</u> : Editorial Board meeting. ESR/STSM. <u>D</u> : Dissemination. Newsletter. Reporting	M: MC Meeting 4. WGs Meeting 3. Workshop 2. Training School 2. D: S&T strategies	<u>M</u> : International Conference 1. Edit. Board. ESR/STSM. <u>D</u> : Dissemination. Reporting		
	3	<u>M</u> : MC Meeting 5. WGs Meeting 4. <u>D</u> : Dissemination. Strategies & Activities	<u>M</u> : Edit. Board: State- of-art AQC. ESR/STSM <u>D</u> : Dissemination. Strategies. Reporting	<u>M</u> : MC Meeting 6. WGs Meeting 5. Workshop 3. Training School 3. <u>D</u> : S&T strategies	<u>M</u> : Edit. Board: Newsletter. ESR/STSM <u>D</u> : Dissemination. Reporting		
N	4 <u>1</u> : <i>Miles</i> t	<u>M</u> : . MC Meeting 7. WGs Meeting 6. <u>D</u> : S&T strategies. Link to EU programs, Industry ones <u>D</u> : Deliverables	<u>M</u> : Workshop 4. Training School 4. <u>D</u> : Dissemination. ESR/STSM. S&T strategic activity.	<u>M</u> : WGs Meeting 7. <u>D</u> : S&T strategies and activities. ESR/STSM. Dissemination	<u>M</u> : International Conference 2. MC Meeting 8. <u>D</u> : Final Evaluation. Reporting		

Aveiro Joint-Exercise Intercomparison

13 October 2014 (Starting Joint-Exercise): 2 weeks duration ! 14 - 15 October 2014 (EuNetAir WG1-WG4 Meeting)

EuNetAir Air Quality Joint-Exercise Intercomparison 2014 Air quality campaign at Aveiro (Portugal) city centre 2014

Continuous measurements: CO, benzene, NOx, SO2, PM10, VOC Temperature, humidity, wind velocity, wind direction, solar radiation, precipitation

COST partners are invited to install their **microsensors** side-byside with Mobile Laboratory Air-Quality standardised equipment

OUTREACH ACTIVITIES from Action TD1105 (1/1)

Editorial Activities: WGs MEETING at EEA

New Sensing Technologies for Air-Pollution Control and Environmental Sustainability

- Special Issue Urban Climate (Elsevier)
- New Sensing Technologies and Methods for Air-Pollution Monitoring
- Proceedings of the Action EEA Meeting open to external contributors. Peer-review process (http://ees.elsevier.com/uclim/)
- <u>Guest Editors</u>:
- ✓ Michele Penza, ENEA, Italy
- Anita Lloyd Spetz, Linkoping University, Sweden
- ✓ Ole Hertel, Aarhus University, Denmark
- ✓ Ulrich Quass, IUTA eV, Germany
- Deadline for submission: 28 February 2014 (Close)

COOPERATION IN SCIENCE AND TECHNOLOGY

- Number of Submissions: 21 Manuscripts
- Expected Publication: Fall 2014 (Nov-Dec 2014)

Editorial Activities: Symposium at EMRS

New Sensing Technologies for Air-Pollution Control and Environmental Sustainability

• Special Issue <u>Journal of Sensors and Sensor Systems</u> (Copernicus Publications)

Advanced Functional Materials for Environmental Monitoring and Applications Proceedings of Symposium B EMRS Spring Meeting 2014, 26-30 May 2014, Lille (FR)

Peer-review process (www.journal-of-sensors-and-sensor-systems.net)

- <u>Guest Editors</u>:
- ✓ Michele Penza, ENEA, Italy
- ✓ Anita Lloyd Spetz, Linkoping University, Sweden
- ✓ Albert Romano-Rodriguez, Barcelona University, Spain
- ✓ Yongxiang Li, Chinese Academy of Sciences, China
- ✓ Meyya Meyyappan, NASA Ames Research Center, USA
- Deadline for submission: <u>30 June 2014</u>
- Expected Publication: Fall 2014 (Nov-Dec 2014)

SOME FP-7 PROJECTS ON AIR QUALITY: OUTDOOR

Project Acronym	Title of Project / Coordinator / Email
CITI-SENSE FP7-ENV-2012	Development of Sensor-based Citizens' Observatory Community for Improving Quality of Life in Cities Coordinator: Alena Bartonova, NILU, Kjeller, Norway Email: <u>alena.bartonova@nilu.no</u>
AIRMONTECH FP7-ENV-2012	Air Pollution Monitoring Technologies for Urban Areas Coordinator: Thomas Kuhlbusch, IUTA eV, Duisburg, Germany Email: <u>tky@iuta.de</u>
OMNISCIENTIS FP7-ENV-2013	A Living Lab Approach to Develop Sustainable Environmental Governance Coordinator: Anne-Claude Romain, Universitè de Liege, Belgium Email: <u>acromain@ulg.ac.be</u>
EVERYAWARE FP7-ICT-FET2012	Enhance Environmental Awareness through Social Information Technologies Coordinator: Vittorio Loreto, ISI Foundation, Torino, Italy Email: <u>vittorio.loreto@isi.it</u>
MACPOLL FP7-EMRP-2012	Metrology for Chemical Pollutants in Air Coordinator: Annarita Baldan, VSL B.V., Delft, The Netherlands Email: <u>abaldan@vsl.nl</u>

SOME FP-7 PROJECTS ON AIR QUALITY: INDOOR

Acronym	Title of Project / Coordinator / Email
SENSINDOOR FP7-NMP-2013	Nanotechnology-based Intelligent multi-Sensor System with Selective Pre-concentration for IAQ Control Coordinator: Andreas Schuetze, Saarland University, Germany Email: <u>schuetze@Imt.uni-saarland.de</u>
MSP FP7-ICT-2013	Multi-Sensor Platform for Smart Building Management Coordinator: Anton Kock, Materials Center Leoben, Austria Email: <u>Anton.Koeck@mcl.at</u>
INTASENSE EeB-ENV-2011	Integrated Air Quality Sensor for Energy Efficient Environment Control Coordinator: Robert Bell, C-Tech Innovation Ltd, Chester, UK Email: <u>rob.bell@ctechinnovation.com</u>
CETIEB FP7-ICT-2011	Cost-Effective Tools for Better Indoor Environment in Retrofitted Energy Efficient Buildings Coordinator: Jurgen Frick, University of Stuttgart, Germany Email: Juergen.Frick@mpa.uni-stuttgart.de
OFFICAIR FP7-ENV-2010	On the Reduction of Health Effects from Combined Exposure to Indoor Pollutants in Modern Offices Coordinator: John Bartzis, University of Western Macedonia,Greece Email: <u>bartzis@uowm.gr</u>

Interdisciplinary Networking with other COST Actions (1/1):

- <u>COST Action ES1004</u> European framework for online integrated air quality and meteorology modelling. Speaker Peter Suppan (KIT, Germany) at Action TD1105 EuNetAir meeting (Rome, 4-6 Dec 2012); Speaker Nicolas Moussiopoulos (International Hellenic University, Greece) at Action TD1105 EuNetAir meeting (Duisburg, 4-6 March 2013); Speaker Stefano Galmarini (JRC-Ispra, Italy) at Action TD1105 EuNetAir meeting (Duisburg, 4-6 March 2013).
- <u>COST Action ES1002</u> Weather Intelligence for Renewable Energies (WIRE). Collaboration on devices, systems and methods for indoor/outdoor energy efficiency and weather information for forecasting the energy production. Preliminary exchange between both Action Chairs and Vice-Chairs.
- <u>COST Action MP0901</u> Designing Novel Materials for Nanodevices: From Theory to Practice. Collaboration on nanostructured materials for sensors, devices and systems to be applied to indoor/outdoor energy efficiency and air-pollution monitoring. Prof. Eduard Llobet (Universitat Roviri I Virgili, Spain) continues his research activities from Action MP0901 as joined member to *EuNetAir*.
- **COST Action IC1102** Versatile, Integrated, and Signal-aware Technologies for Antennas. Collaboration on wireless sensors and sensor networks for air-pollution monitoring. Preliminary exchange between both Action Chairs at European Parliament in Brussels on 29 January 2013 during COST-event "How can networking in Science and technology help SMEs meet the Innovation Union goals ?".
- **COST Action ES0802** Unmanned Aerial Systems (UAS) in Atmospheric Research. Collaboration on sensors, devices, systems and methods for air-pollution monitoring at real outdoor scenario. Prof. Burkhard Wrenger (University of Applied Sciences Ostwestfalen-Lippe), Dr. J. Valentin Lavric and Dr. Martin Kunz (Max Planck Institute for Biogeo chemistry) continue their research activities from Action ES0802 as joined members to *EuNetAir*.
- <u>COST Action ES0602</u> Chemical Weather Forecasting and Information Systems. Collaboration on information systems and methods for chemical weather forecasting and air-pollution monitoring at real outdoor scenario. Prof. Kostas Karatzas (Aristotle University Thessaloniki, Greece), Dr. Dimiter Syrakov (Bulgarian Academy of Sciences), Dr. Zita Ferenczi and Dr. Krisztina Labancz (Hungarian Meteorological Institute, Hungary) continue their research activities from Action ES0602 as joined members to EuNetAir.

CONCLUSIONS

The COST Action TD1105 *EuNetAir* is proposed to solve problems and strengthen the area of:

- Air Quality Control
- Environmental Sustainability
- Indoor/Outdoor Energy Efficiency
- Climate Change Monitoring
- Health Effects of Air-Pollution

Expected Impact by Action TD1105

- European Leadership on AQC Science & Technology
- Development of Green-Economy
- Support to Sustainable Development
- Support to Monitoring System of Clean Air for Europe
- Fostering Research & Innovation on New Sensing Technologies for Environmental Monitoring

MC Chair:	Dr. Michele Penza, ENEA, IT	ACKNOWLEDGEMENTS
	michele.penza@enea.it	
	Prof. Anita Lloyd Spetz	KICK-OFF MEETING of Action TD1105
MC Vice Chair:	Linkoping University, SE	COST Office, Brussels, 16 May 2012
	spetz@ifm.liu.se	
	Dr. Corinna Hahn	TD1105 MANAGEMENT COMMITTEE
Grant Holder:	Eurice GmbH, DE	
	c.hahn@eurice.eu	ATTENTION
Scientific Secretary	Dr. Annamaria Demnijic Hifig annamaria.uemarinis@uniba.it	R YOUR KIND AT LENTION
	Dr. Deniz Karaca	
Science Officer:	deniz.karaca@cost.eu	
Administrative	Dr. Andrea Tortajada	
Officer:	andrea.tortajada@cost.eu	
	Prof. Kostantinos Kourtidis (GR)	
Rapporteur ESSEIVI:	kourtidi@env.duth.gr	
	Prof. Joaquim Manuel Vieira (PT)	
Rapporteur MPNS:	jvieira@cv.ua.pt	
Papportour CMCT.	Prof. Antonio Lagana (IT)	www.cost.eunetair.it
	lagana05@gmail.com	Link of COST Action TD1105 EuNotAir
		LINK OF COST ACTION TO TOS EUNELAIT.

CINC AND TECHNOLOGY

Action's Objectives (2/3)

MoU Secondary Objectives of COST Action TD1105:

• <u>To provide</u> a platform between scientists in the field of materials, nanotechnology and sensor-systems and other scientists such as environmental protection engineers, public agencies managers, stakeholders, decision-makers, aiming to improve best practices in AQC and explore the potential role of new generation of low-cost sensing devices.

• <u>To investigate</u> sensing mechanisms of functional nano-materials for gas measurement and identification of the best available nano-materials, providing concepts and harmonising pre-standardised methods; based on available datasets from partners.

• <u>To assess</u> degradation rates and lifetime of sensor elements in defined environmental conditions and evaluate interactions of sensitive materials with outdoor/indoor pollutants; based on datasets from ongoing and historical field deployments of low-cost sensors.

• <u>To investigate</u> the best available technology for sensor deployment, communication, power supply and data storage, analysis and display.

Action's Objectives (3/3)

MoU Secondary Objectives of COST Action TD1105:

• <u>To monitor</u> real-world environmental conditions with <u>experimental campaigns</u> to assess composition of *indoor air* (buildings: house and office) and *outdoor air* (urban areas and industrial sites) and to investigate how such data can be utilised in air pollution modelling.

• <u>To approach</u> standardisation of methods for air quality measurements, e.g. harmonisation of test procedures, chemical analysers, post processing, protocols, etc..

• <u>To disseminate knowledge on functional materials and sensor-systems for</u> AQC; to aid better focusing of Europe's resources by coordinated efforts in AQC and environmental sustainability to strengthen Europe's competitiveness and scientific excellence improving capacity building and networking to tackle global challenges in a big market in the mid-long term.

European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability - EuNetAir

COST Action TD1105 EuNetAir: Action participants

Summary YEAR 2: 1 July 2013 - 30 June 2014

- Total Number of Participants:
- Early Stage Researchers (ESRs): 63 (35%)
- Females:
- <u>MC Members</u>: 52 Male: 38 (73%); Female: 14 (27%)
- <u>MC Substitutes</u>: 30 Male: 24 (80%); Female: 6 (20%)

180 (80% active)

51 (28%)

Action Research Directions: Innovation (1/1)

Innovation Highlights of COST Action TD1105 *EuNetAir*:

The Working Program includes multidisciplinary Research at integrated approach and trans-domain multi-scale level:

- Nanomaterials for low-cost AQC sensors
- Improved gas sensor systems and low-power sensing microdevices
- Wireless sensor networks and distributed intelligence
- Air-quality modelling and chemical weather forecasting
- New protocols, standards and methods for AQC sensors
- Harmonisation of environmental measurements
- Guidelines for AQC systems and transducers
- Environmental sustainability and energy efficiency

Results vs. Objectives

Cooperative original research and significant breakthroughs from EuNetAir

- Development of a portable sensor-system based on a single nanowire of metal oxides at low powered (submicroWatt) for air pollution detection (CO, NO2). Universitat de Barcelona (Prof. Albert Romano-Rodriguez, Dr. J. Daniel Prades, Spain) and IREC (Prof. Juan Ramon Morante, Spain).
- Development of p-type metal oxide gas sensing elements for the detection of H₂ and aldehydes. FORTH (Prof. George Kiriakidis, Greece) and University of Brescia (Prof. Giorgio Sberveglieri, Italy) in close collaboration with University of Tuebingen (Dr. Nicolae Barsan, Germany).
- Miniaturized sensor based on CMOS-SOI technology with USB-port and microstructured active material for ubiquitous air quality measurements and portable methods. Cambridge University (Prof. Florin Udrea, UK) and Warwick University (Prof. Julian Gardner, UK).
- A low-cost modular sensor platform combining IR spectrometry based on microstructured Fabry-Perot Filters and MOX gas sensors for indoor air quality monitoring (CO₂, VOC) and medical applications. Prof. Andreas Schuetze (Saarland University, Germany).
- Air Quality Bike (Aeroflex) for mobile air quality measurements developed by VITO (Dr. Jan Theunis, Belgium)
 including participatory sensing by *City-Guards* measuring air quality in Antwerp during six months by a portable gas
 sensor-system.
- Wireless sensor network for air-quality monitoring around Heathrow airport (London, UK) based on at least 50 nodes consisting of gas sensors (CO, CO2, NOx, O3, SO2, VOC), particulate matter (PM10, PM2.5) detectors and environmental parameters monitoring (temperature, humidity). University of Cambridge (Prof. Rod Jones, UK) and Alphasense Ltd (Dr. John Saffell, UK).
- Consultation on Assessing human exposure to air pollution in health assessment studies in Europe from Prof.
 Ole Hertel (Aarhus University, Denmark) to a request of European Environment Agency.
- Software Tool applied to Air-Quality Modelling at local and large scale for real case-studies in Europe. University of Ljubljana (Prof. Rahela Zabkar, Slovenia).
- Development of commercial miniaturized low-cost sensor-systems for air-quality monitoring. Dr. Nicolas Moser (SGX-Sensortech Ltd, Switzerland).
- A low-cost NDIR platform for sub-ppm gas detection and CO2 sensing for indoor/outdoor monitoring. Prof. Ingrid Bryntse (SenseAir SA, Sweden).