European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

INTERNATIONAL WG1-WG4 MEETING on

New Sensing Technologies and Modelling for Air-Pollution Monitoring Institute for Environment and Development - IDAD Aveiro, Portugal, 14 - 15 October 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016 - Year 3: 2014-15 (Ongoing Action)

AIR QUALITY MODELLING IN SLOVENIA: STUDYING SENSITIVITY OF WRF/CHEM FORECAST

Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*

Rahela Žabkar

Function in the Action: MC Member, WG3 Member **University of Ljubljana, Physics Department, Slovenia**

Background

Air quality models:

- complete coverage of air quality (time&space)
- provide an improved understanding of the sources, causes and processes
- can be applied prognostically

 important tool for decisions about effective abatement strategies and for environmental assessments during planning stage

• ..

Challenges:

- require extensive input data (limited accuracy of inputs)
- many uncertainties in input data and model representation
- extensive validations and sensitivity analyses needed
- must be used together with measurements

AQ modelling at UL

Models:

- WRF/Chem model
- ALADIN/CAMx model

statistical model for O₃ daily maximum forecasting

EuNetAir WG3: Environmental measurements and air-pollution modelling Objectives:

- Report on chemical weather forecasting at global area and hot-spot case-studies;
- Assessment of air-quality modelling with data assimilation from integrated AQC gas sensors;

Facilities: WRF/Chem model

On-line coupled

For past air pollution episode studies:

- model setup depends on purpose and area of interest

Computer cluster at UL

For participation in international initiatives, actions:

- AQMEII, COST action activities...

For operational AQ forecast in Slovenia:

- running since summer 2013
- available online:

http://meteo.fmf.uni-lj.si/onesnazenje

- the basis for further scientific research

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Modelling domains used in WRF/Chem operational forecast for Slovenia running at UL

ALADIN/CAMX:

• running operationally at Slovenian Environment Agency

Copmuter cluster at SEA

Statistical model for O₃ daily maximum forecast:

 Regression type model based on measured data, meteorological forecast and predicted trajectories

Anthropogenic emissions

For Slovenia:

- a) Detailed database for year 2009 (currently used)
- b) Detailed database for year 2011 (new, not yet implemented)

Outside Slovenia:

TNO/MACC-II for year 2009

NOx (tons/year), 100 m resolution 0.06 0.13 0.19 0.25 0.31 0.38 0.44 0.50 0.56 0.63 0.69 0.75 0.81 0.88 0.94 1.00+

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

TNO/MACC II: PM2.5 (g/hour)

AQ measurements

National network: 17 AQ stations, most of them monitoring O_3 , PM10; some of them: NOx, SO₂, PM25, CO, heavy metals, benzene, benzo(a)pirene Supplement network: 19 AQ stations monitoring SO₂; some of them: O_3 , NOx, PM10

17 AQ stations used in our analyses:

KOP – urban	MS – rural
NG – urban	ZAG – urban
OTL – rural	ZAD – rural
LJ – urban	VNA – rural
ISK – rural	KOV – rural
KRV – rural	ZAV – rural
HRA – urban	VEL – urban
TRB – suburban	MOH – rural
CE – urban	

Current activities

- EuMetChem COST: studying the importance of aerosol feedbacks with unified WRF/Chem model. Participated in international AQMEII exercise.
- EuNetAir COST: oportunity for exploring possibilities for combination of modeling with observational data to produce a most probable representation of the state of the variables (off-line data assimilation).
- Support to Slovenian Environment Agency (statistical model and ALADIN/CAMx modelling system)
- Studies on operational WRF/Chem forecasting system
 - -> to identify and estimate the impact of model uncertainties
 - -> focus on sources of uncertainties with highest impact
 - -> to improve model performance

Scientific questions

Coupled Chemistry Meteorology Model (CCMM) – WRF/Chem:

- Can an integrated model (considering many uncertainties) produce a good climatology of the most important chemical species?
- Is such model able to beat persistence or statistical forecast of these species?
- What is the impact of aerosol feedbacks on weather and AQ forecast?
- What is the added value of high resolution modelling (running forecast in 3.7 km resolution is computationally very demanding)?
- What is the sensitivity of WRF/Chem forecast to using detailed anthropogenic emission database for Slovenia (considering that Slovenia is a small country)?

Evaluation of O₃, NO₂ and PM10 WRF/Chem predictions

WRF/Chem, statistical forecast, persistence

Summer 2013, ozone daily maximum:

Sensitivity experiments

5 model predictions for summer 2013:

- 1. **OPER** operational forecast
 - 1st day and 2nd day forecast for June-August 2013
 - WRF-Chem model, selected parameterization schemes
 - 2 nested domains, the resolution of the inner domain (D2) 3.7 km
 - detailed anthropogenic emissions for Slovenia, TNO/MACC-II for EU
 - aerosol effects on radiation processes taken into account (but not impacts on microphysical processes)

2. RES – lower horizontal resolution

Predictions on the outer domain (D1) with 11 km resolution

Sensitivity experiments

3. NOE – no aerosol effects on radiation processes

- Zero aerosol concentrations considered in radiation schemes -> reduced scattering of solar radiation or absorbtion (e.g. black carbon) ...
- subsequent changes in temperature, boundary layer height, relative humidity, clouds,...
- 4. EMIS different anthr. emissions for Slovenia
 - TNO/MACC-II emissions everywhere
 - Resolution: $1/8^{\circ} \times 1/16^{\circ}$, top-down approach

units: tones	СО	NH ₃	NMVOC	NOx	PM10	PM25	SO ₂
TNO/MACC	124635	17794	31692	45259	16326	13255	11569
SLO 2009	94004	13681	13578	34693	14634	10453	8423
SLO 2011	140135	650	20654	40480	14586	14024	8399

5. PER – persistence (pollutant level today and tomorrow the same as yesterday)

Impact of model resolution

Mean for summer 2013

Impact of no aerosol direct effects

Mean for summer 2013

Impact of TNO/MACC emissions for Slovenia

Mean for summer 2013

WRF/Chem, statistical forecast, persistence

Summer 2013, ozone daily maximum:

Impact of model parameterization schemes

- WRF-Chem model sensitivity study
- August 2003 episode, 51 ensemble simulations
- Compared impacts on simulated **<u>ozone</u>** concentrations for varying:

- **RAD** radiation schemes
- ICC chemical initial conditions
- **BCC** chemical boundary conditions
- +NOx, +VOC anthropogenic emissions (+30%)
- **BIO** biogenic emissions
- **RES** model domain setup and resolution

Data assimilation

Models: WRF/Chem model (online)

ALADIN/CAMx model (offline)

• statistical model for O₃ daily maximum forecasting

Challenges related to chemical data assimilation (Bocuet et al., 2014):

- major limitation for chemical data assimilation in models is likely to be the limited availability of data, particularly in near-real-time
- On-line chemical data assimilation in coupled chemistry meteorology models is still in its infancy

Off-line data assimilation techniques

(data fusion)

National and supplement network of AQ monitoring stations in Slovenia

Conclusions

- Depending on station and statistical measure applied WRF/Chem model can beat persistence or statistical model predictions (for ozone daily maximum)
- Further improvements of WRF-Chem forecasting skill could be obtained by applying one of the bias-correction methods in order to account for unresolved topographical effects and emission patterns.
- Data assimilation in on-line coupled models still in its infancy: only a few application of data assimilation in coupled meteorology-chemistry models, many potential difficulties
- Can EuNetAir Cost action help to make steps towards data fusion to produce a most probable representation of the state of the variables by combining model outputs and measurements

Thank you!

rahela.zabkar@fmf.uni-lj.si

