European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

INTERNATIONAL WG1-WG4 MEETING on

New Sensing Technologies and Modelling for Air-Pollution Monitoring

Institute for Environment and Development - IDAD

Aveiro, Portugal, 14 - 15 October 2014

<u>Action Start date</u>: 01/07/2012 - <u>Action End date</u>: 30/06/2016 - <u>Year 3</u>: 2014-15 (Ongoing Action)

Emergency Response and Chemical Weather Forecast Systems in NIMH

<u>Speaker</u>

Kiril Slavov

Invited Expert

NIMH / Bulgaria

BERS - context and objectives ...

Why did we build BERS?

- Nuclear Accidents long range transport Chernobyl, Fukushima ...
- Volcano

Island Eyjafjallajokull - Millions of passengers stranded; 1.5 – 2 billions euros losses ...

• Other "conventional" events

Jugoslavian wars, Iraq, Chelopech ...

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

>-----

Meteorological pre-processing (input to the built in PBL model)

Two sources of met-data: from UK Met.Office, Bracknell (2.5°, GRID) from DWD, Offenbach (1.5°, GRIB)

Type of meteo-data: U₈₅₀, V₈₅₀, T₈₅₀, T_{gl}, Prec (**At**=12 h)

Operational data base (Ts - current synoptic term)

Archive data base

Trajectory calculations

$$X(t+\Delta t) = X(t) + V(t).\Delta t$$

Current activities ...

http://info.meteo.bg/ews/index-en.html

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

) meh

Dispersion model EMAP (Eulerian Model for Air Pollution)

Time splitting approach. Cartesian coordinate system in horizontal (Arakawa's C type). Log-linear terrain-following staggered Z-coordinate system. Processes involved:

Advection

TRAP scheme Bott's type explicit positively definite conservative limited numerical viscosity very fast

Horizontal diffusion:

the simplest **explicit** scheme

Vertical difusion

- the simplest **implicit** scheme variable steps
- variable diffusion coefficient

Vertical domain - 4 levels levels layers' depth 1930 m 1430 m 935 995 m 620 m 650 m 375 m 275 m 200 m 100 m 80 m 50 m 20 m

Dry deposition: bottom boundary condition to vertical diffusion equation

Wet removal: simple decay rate

... Current activities

NATIONAL INSTITUTE OF METEOROLOGY AND HYDROLOGY

Numerical Simulation of Radioactive Pollution Distribution

RESULTS ...

Overlap: 55.0%

Created by user dsyrakov on 2012-01-05 12:00:33 UTC

Figure of Merit in Space

.. RESULTS

Verification of EMAP: comparison with ETEX-I data

BERS - Activities

UPGRADES of BERS

2001 – putting of BERS into operation

2007 – multi-nuclide treatment, exposure doses calculations

2010 – for ENSEMBLE Volcano exercise:

- new vertical structure up to 12 km, exercise specific levels
- vertical diffusion coefficients aloft 10% of PBL ones
- NCEP meteorology added over 2 km (to the DWD data)
- continuous source long term calculations

2011 – for ENSEMBLE Fukushima exercise:

- increase the space resolution of NH from 300 to 25 km
- respective upgrade of meteorological pre-processing
- respective upgrade of EMAP and visualizing software
- new **Figures 7, 8** added to BERS web-site containing the results from every day hypothetical release simulations (animated).

2014 – new data format and source for meteorological information

WHAT IS THIS: "CHEMICAL WEATHER"?

Analogy: Meteorological Weather In fact: Forecast of Pollution Levels in a particular area for particular time

<u>COST Action ES0602</u> "Towards a European Network on Chemical Weather Forecasting and Information Systems" (<u>http://www.chemicalweather.eu/Domains</u>)

Aim: To setup a forum for benchmarking, harmonizing and developing approaches and practices for chemical weather forecasting network and near-real-time information systems in Europe (exchange of information, BCs).

Grant from National Science Fund (Contract №Д002-161/16.12.2008).

Prototype of the System (BgCWFIS,ver.1) was created

EC FP7 Project PASSODOBLE (NIGGG) – version 2 created

MODELS USED, EXPERIENCE, DOMAINS

The US EPA Models-3 modeling system is planned to be used, consisting of:

- **CMAQ** (Community Multi-scale Air Quality model), the chemical-transport model (CTM) the most important part of the System;
- WRF Weather Research and Forecasting Model, the meteorological pre-processor to CMAQ;
- **SMOKE** (Sparse Matrix Operator Kernel Emissions Modelling System) emission pre-processor to CMAQ.

In addition FORTRAN programs and Linux Scripts created and used

Experience: (EC FP5 and FP6 Projects BULAIR, ACCENT, QUANTIFY)

- Early warning and forecast system for air quality around TPPs "M-I"
- Climate change impact on air quality CECILIA project

Five nested domains with resolution 81 km, 27 km, 9 km, 3 km, 1 km For convenience divided to two parts

BgCWFIS ver.2.1 domains: Europe – Balkan Peninsula - Bulgaria

3. OPERATIONAL DESIGN OF **<u>BgCWFIS</u>**, version 2

BgCWFIS ver.2 runs automatically every day at 00 UTC Produces 72-hour forecast on hourly bases

- White boxes Models-3 elements
- Blue boxes:
 Input data
- Brown boxes: Own Fortran routines.

TRANSFER OF DATA BETWEEN DOMAINS:

- Blue arrows:
 - **Meteorological BCs**
- Red arrows:
 - **Chemical BCs**
- Black arrows:

Exchange of data inside each domain

4. METEOROLOGICAL CALCULATIONS (WRF and MCIP)

Weather Research and Forecasting (WRF) Model - successor to the MM5 WRF is a fully compressible and non-hydrostatic. Terrain-following hydrostatic pressure coordinates.

Here, ARW (Advanced Research WRF), version 3.2.1, is exploited. The vertical structure is of 27 levels.

The Analysis Nudging option (FDDA) switched on (first domain, only)

Physics Options Parameterization		
Microphysics	WSM6 scheme (Hong and Lim, 2006)	
Cumulus Parameterization	Kain-Fritsch scheme (Kain, 2004)	
Planetary Boundary Layer	YSU scheme (Hong et al., 2006)	
Longwave Radiation	RRTM scheme (Mlawer et al., 1997)	
Shortwave Radiation	Dudhia scheme (Dudhia, 1989)	
Land Surface Model	nd Surface Model NOAH LSM scheme (Chen and Dudhia, 2001)	

Big variety of physics options that can be combined in any way. Here:

Free Meteorological data: US NCEP's GFS (Global Forecast System) Each day, at 00 UTM, 84-hour forecast downloaded, first 12 hours - spin-up.

MCIP (Meteorology-Chemistry Interface Processor) makes met. input to CMAQ and SMOKE, vertical interpolation to CMAQ's 14 sigma-levels.

EMISSION PROCESSING (the most uncertain part of the task)

Two kinds of emissions used in BgCWFIS, ver.2: Anthropogenic emissions (<u>emission inventories</u> as primary data) Biogenic emission sources (BgS) – calculated by SMOKE

- **Emission Inventories:** determined by direct measurements (some stacks) and by expert calculations CORINAIR, SNAPs, big areas
- **BgCWFIS ver.2.1 inventories:** 2005 TNO data (~7× 8 km), 10 SNAPs, 8 pollututants. (CH4, CO, NH3, NMVOC, NOx, SOx, PM10, PM2.5)
- **BgCWFIS ver.2.2 inventories:** 2010 Bulgarian Inventory (MOSW) SNAP 1-6: by sources, SNAP 7-10: by country totals; same 8 pollutants

Emission Processing: gridding, temporal (vertical) allocation, speciation

Temporal allocation profiles (TNO – Daily, Weekly, Yearly) **Speciation profiles** (US EPA,

- VOC's and PM2.5 speciation profiles
- Coincidence between SNAPs and US SCC (several sources per SNAP)
- Weighted average for every SNAP; weight % of pollution created

Gridding: Web-based GIS System created (GridEmis) Main Board

🕽 Site administration Django site admin - Mozil	la Firefox
ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	
Site administration Django site admin +	
195,96,231,112:8086/admin/	
Mark Bakad 🚳 Californi Grade d 😒 Lakash Dan disara 🥅	MACC emissions
Most visited 🥣 Getting Started 🔝 Latest Headlines 🛄	MACC_emissions
Django administration	
Site administration	
Auth	
Groups	🗣 Add 🛛 🥒 Change
Users	🗣 Add 🛛 🥒 Change
Custom Grids	
Custom grids	🗣 Add 🛛 🥒 Change
Macc Records Europe Level	
CustomGrid By Filters	🗣 Add 🛛 🥒 Change
Grid Element NEW	Add 🖉 Change
Grid Element OLD	♣Add ∥Change
MACC records NEW	Add / Change
MACC records OLD	Add Change
Macc unloads	Add Change
	Inda pronongo
	didd / Chappen
ASL DL Sc Bu CuctomCrid	♣Add ØChange
Macheas by Customentu	₩AUU 🖉 Change
Snap Elements Local	
CustomGrid By Snap	♥Add ∕Change
Geom Category	🖶 Add 🕜 Change
Geom Element	🖶 Add 🛛 🖉 Change
Snap	🖶 Add 🛛 🥒 Change
Snap Record	🖶 Add 🛛 🥒 Change

Emissions producing (time allocation and speciation):

Area Soureces (AS): FORTRAN Code AEmis created. Input: gridded inventory, temporal and speciation profiles Output: 2-D NetCDF files for 1-hour emissions for the 3 forecast days Pollutants: CO, NH3, NO, NO2, SO2, SULF, 10 VOCs, PMC, 5 PM2.5

Large Point Sources (LPS): FORTRAN Code PEmis created. Input: gridded inventory, temporal, vertical and speciation profiles Output: 3-D NetCDF files for 1-hour emissions for the 3 forecast days Pollutants: the same 22 lump pollutants

Biogenic Source (BgS): SMOKE's *Biogenic Processing* used Input: gridded LandUse (USGS data base, extracted by WRF) Output: 2-D NetCDF files for 1-hour emissions for the 3 forecast days Pollutants: CO, NO and 10 VOCs

Final CMAQ emission input: SMOKE's *MrgGrid Processing* used to merge AS-, LPS- and BgS-emission files in a common NetCDF file

CMAQ CALCULATIONS

Initial conditions: Previous run's concentration file **Boundary conditions:** From the senior domain; for Europe - climate

CMAQ Output

NetCDF file on 1-hour basis for the 3 days of forecast (14 layers)

Pollutants: 78 pollutants, from which:

- 52 gaseous (NOx, SOx, Ozone etc.)
- 21 aerosols (Coarse, Aitken and Accumulation modes)
- 5 aerosol distributions (3 by number, 2 by area)

Post-processing

- Extracting surface values of 19 most important pollutants
- Creating and archiving of a NetCDF file, containing this data
- Visualization of NO2, SO2, Ozone and PM10 fields (automatic) PAVE software used

Current activities

BgCWFISv2 PERFORMANCE (http://info.meteo.bg/cw2.1/)

CONCLUSIONS - BERS

1. In this ENSEMBLE exercises, the BERS produced concentration and deposition fields are presented in evolution vs. the ensemble ones

2. Despite many unfavourable circumstances:

- very poor met-data only earth surface and 850 hPa level
- very low space resolution of the met-data 1.5 deg
- very low time resolution of the met-data 12 h
- the possibly most simple numerical schemes EMAP produces quite satisfactory results

3. All main features of the volcano ash and radioactivity distribution are captured by BERS and its dispersion model EMAP

All this means that BERS can be used with confidence in case of nuclear accidents and that NIMH with its BERS is a useful member of the ENSEMBLE Consortium.

CONCLUSIONS - CW

The Bulgarian Chemical Weather Forecast and Information System is designed on the base of US EPA Models-3 System: CMAQ (Chemical Transport Model), WRF (meteorological pre-processor) and SMOKE (emission pre-processor).

It comprises 5 nested domains: Europe (<u>81 km</u> resolution), Balkan Penin-sula (<u>27 km</u>), Bulgaria (<u>9 km</u>), Sofia district (<u>3 km</u>) and Sofia city (<u>1 km</u>).

The meteorological input to the system is the NCEP's GFS data (84-hour simulation, first 12 hours used for spinning-up followed by 3-day forecast).

The emission input exploits the high resolution inventory for year 2005 produced by TNO, the Netherlands and the National emission inventory for 2010, provided by MOSW. The inventory data is gridded by means of a specialized <u>Web-based GIS</u> <u>system</u>. Temporal allocation and speciation are applied. Biogenic emissions are prepared by <u>SMOKE</u>.

The system is run automatically every day at 00 UTM. The results of each System's run are post-processed in a way to archive the most important pollutants. Part of these pollutants is visualized as sequences of maps giving the evolution of the air quality over the various domains.

ACKNOWLEDGEMENTS

Grant from National Science Fund (Contract №Д002-161/16.12.2008). Grant from National Science Fund (Contract № ДЦВП-02/1/29.12.2009). COST Actions ES0602 and ES1004. 5thFP project BULAIR (Contract Nr. EVK2-CT-2002-80024). 6thFP Network of Excellence ACCENT (Contr. Nr. GOCE-CT-2002-500337). 6thFP Integrated Project QUANTIFY (Contract Nr. GOGE-003893). 7thFP project SEE-GRID-SCI (Contract Nr. FP7 –RI-211338). 7th FP project EGI-InSPIRE (Contract Nr. 261323). 7th FP project PASODOBLE (Contract Nr. 241557).

US EPA, NSEP, EMEP, TNO for providing free-of-charge models and data

