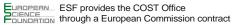
European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105

INTERNATIONAL WG1-WG4 MEETING on

New Sensing Technologies and Modelling for Air-Pollution Monitoring University of Aveiro, Institute for Environment and Development - IDAD Aveiro, Portugal, 14 - 15 October 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016 - Year 3: 2014-15 (Ongoing Action)


PRIORITIES of COST Action TD1105 *EuNetAir*

Michele Penza

Function in the Action: Action Chair ENEA - Brindisi, Italy

OUTLINE

- WG1 PRIORITIES: Sensor Materials and Nanotechnology
- WG2 PRIORITIES: Sensors, Devices and Systems for AQC
- WG3 PRIORITIES: Environmental Measurements and Air-Pollution Modelling
- WG4 PRIORITIES: Protocols and Standardisation Methods
- SIG1-SIG4 PRIORITIES:
 - ✓ SIG1: Network of Spin-offs
 - ✓ SIG2: Smart Sensors for Urban Air Monitoring in Cities
 - ✓ SIG3: Guidelines for Best Coupling Air-Pollutant & Transducer
 - ✓ SIG4: Expert Comments for Revision of Air Quality Directive

WG1 PRIORITIES: Sensor Materials and Nanotechnology

WG1-Leader: WG1 Compositi	 Prof. Juan Ramon Morante, IREC, Barcelona, Spain Prof. Jyrki Lappalainen, Oulu University, Finland (<i>Rome and Cambridge Meeting WG1 Chair</i>) On: 3 Sub-WG Leaders and 30 Members
PRIORITY #1:	<u>Metal Oxides (MOX)</u> : Thin Films, Nanoparticles, Nanowires, Nanotubes, Nanoneedles, Nanoporous Forms of Materials (ZnO, SnO ₂ , WO ₃ , TiO ₂ , InO _x , NiO, and magnetic materials Fe_3O_4 , doped dielectrics BaSrTiO ₃ , etc.)
PRIORITY #2:	Carbon Nano MATerials (CNMAT): Nanotubes, Nanoparticles, Graphene, 1D and 2D-nanostructures and their functionalization and doping
PRIORITY #3:	Molecular, Organic/Inorganic Materials: Heterostructures (semiconductors, polymers) and Schottky junctions
PRIORITY #4:	 Processing of low-cost sensors on flexible substrates: Printing techniques, inkjet printing, spin coating, droplet casting, etc. Template assisted growth of nanostructures
PRIORITY #5:	Other sensitive materials: biomaterials, enzymes, antibodies, etc.
PRIORITY #6:	Chemical modifications of the sensor materials with tuned properties to address selectivity and specific applications
PRIORITY #7:	Combination of different approaches and defining the state-of-art of the best available technologies, for example, to realize smart sensor structures

WG2 PRIORITIES: Sensors Devices and Sensor-Systems for AQC

WG2-Leader: WG2 Composition:		Prof. Andreas Schuetze, Saarland University, Germany	
		4 Sub-WG Leaders and 45 Members	
PRIORITY #1:	 Versatile μ-transducers for integration of various nanomaterials: ✓ Allow application specific adaptation and low cost ✓ Low power (down to μW range for single nanowire) 		
PRIORITY #2:	 Dynamic operation of Sensors to gain more than one signal from a single sensor for higher selectivity and stability as well possible self-monitoring at the sensor module level: ✓ Well-know but not yet standard: temperature cycling, Electrical Impedance Spectroscopy (EIS) ✓ New methods: RF, optical, excitation (gas sensitive solar cell), pulsed polarization, mass and dissipation in Quartz Crystal Microbalance (QCM) ✓ Modelling of interaction of sensing layer and gas/dust/aerosol 		
PRIORITY #3:	Selective filters integrated in sensors or sensor modules		
PRIORITY #4:	Dosimeter approach: integrating sensor response		
PRIORITY #5:	Nanoparticle detection for dust and aerosols		
PRIORITY #6:	Intelligent Sensor Modules for NO _x , O ₃ , NH ₃ , H ₂ S, SO ₂ , VOC: ✓ Electronics combined with sensor elements		
PRIORITY #7:	 ✓ Data pre distribut 	Sensor Nodes and heterogeneous networks: e-processing and processing (in node and/or in network: parallel and ed computing) efficient communication	

WG3 PRIORITIES: Environmental Measurements and Air-Pollution Modelling

WG3-Leader: WG3 Composition:		Prof. Ole Hertel, Aarhus University, Denmark		
		3 Sub-WG Leaders and 40 Members		
PRIORITY #1:	 ✓ Various sensor ✓ Sensor ✓ Sensor ✓ CO₂ er indoor 	nental Measurements: s portable sensor-systems to be explored as <i>personal sensors</i> and <i>wearable</i> rs in the life of every day (e.g., bikes, pedestrians, cars, smart cities, etc.) rs for air quality monitoring at outdoor applications rs for air quality monitoring at indoor applications (e.g., green buildings, low missions, offices, schools, air-ventilation systems, HVAC devices, open spaces, energy efficiency, etc.) ss sensors and wireless sensor networks		
PRIORITY #2:	 Air Quality Modelling: ✓ Air-pollution dispersion modelling at local, urban, regional and global range ✓ Chemical weather forecasting (gases, vapors and particulate matter) 			
PRIORITY #3:	 ✓ Smoke ✓ Allerge ✓ Airborr ✓ Fungal ✓ Airborr ✓ Long-rain ✓ Pestici ✓ Radon 	tic Negative Health Effects of Human Exposure to Air-Pollution: a from domestic wood stoves anic pollen from trees, grasses and new invasive species the allergenic material (skin tissue, hair, etc.) released from livestock spores from agriculture and other sectors the PM natural sources (sea spray, soil dust) ange transported organic & inorganic PM including agricultural emissions des applied in Europe farming & ElectroMagnetic Field (EMF) in domestic buildings ases and VOCs as air-pollutants at indoor and outdoor level		

WG4 PRIORITIES: Protocols and Standardisation Methods

WG4-Leader:		Prof. Ingrid Bryntse, SenseAir SA, Delsbo, Sweden	
WG4 Composition:		3 Sub-WG Leaders and 25 Members	
PRIORITY #1:	RITY #1: Odorants: ✓ H ₂ S and organic thiols (mercaptans) ✓ Odour monitoring		
PRIORITY #2:	 Particulate Matter (PM): ✓ PM₁₀, PM_{2.5}, Ultrafine PM ✓ Black Carbon (BC) 		
PRIORITY #3:	 VOC, Indoor Air: ✓ CH₂O methanal (formaldehyde) ✓ C₆H₆ (Benzene) and other BTX (Benzene, Toluene, Xylene) 		
PRIORITY #4:	 Inorganic Gases: NO₂ (nitrogen dioxide) & O₃ (ozone), analysed simultaneously CO₂ (carbon dioxide) (ventilation indicator and greenhouse gas) 		
PRIORITY #5:	✓ <u>Sma</u> cust	 Aiming at Low-cost Sensors: ✓ Small sensor with simple PCB: €100 (OEM manufacturer price to a customer which use in their system) ✓ Sensor modules: €300 	
PRIORITY #6:	IORITY #6: Laboratory and Field Testing at National Accredited Test Laboratorie		

SIG1 PRIORITIES: Network of Spin-offs

SIG1-Leader: SIG1 Composition:		Dr. Marco Alvisi, ENEA, Brindisi, Italy		
		1 SIG1 Deputy and 20 Members		
PRIORITY #1:	Chem	ical and radiation environmental monitoring		
PRIORITY #2:	Ozone	e sensors, NO_x , CO and SO ₂ sensors for automotive applications		
micro		ve stability of the available sensors, compatibility with CMOS electronics, soft CMOS post-processing methods for reproducible hroughput manufacturing		
PRIORITY #4:	Toxic	and explosive (hydrogen) gas leakage		
		nsor based on enzyme for dioxin and Persistent Organic Pollutants), work on POP detection		
PRIORITY #6:	VOC detection developing sensors modules and sensor systems			
PRIORITY #7:	Indoo	r air quality control, leak detection		
PRIORITY #8:	Odour monitoring system (odour-telephone)			
PRIORITY #9:	Enhar group	ncement of the sensing properties by introducing functional receptive s		
PRIORITY #10: Coup		ing different transduction modes in the same device		

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

SIG2 PRIORITIES: Smart Sensors for Urban Air Monitoring in Cities

	SIG2-Leader:		Prof. Rod Jones, University of Cambridge, Cambridge, UK	
	SIG2 Composition:		1 SIG2 Deputy and 40 Members	
✓ ✓		✓ Self-✓ Clev	ussion of «Smart»: elf-monitoring: e.g., fault detection lever design/manufacturing: e.g., self-calibrating. <u>Ideally both needed</u> . mart use of « <i>stupid</i> » (not educated) sensors	
inter ✓ Deliv • •		 ✓ sensinter ✓ Deliv • • • 	r Systems : Sors + analysis/correction + archiving + data mining + mapping + pretation/dissemination ver answers to: General public (low pollution routes/traffic flow) Legislature/compliance Health impacts community Activity goes way beyond <i>simple</i> sensor development	
	PRIORITY #3:	 Other Issues: ✓ Transferring A/Q knowledge from one environment to another (do we have sensor networks everywhere ? Continuously deployed ?) ✓ Use of modelling ? Philosophy of testing models, combining model/sensor network outputs - Data assimilation - Applicability ✓ High cross-disciplinary, are all other communities represented here ? 		
PRIORITY #4: Roadn		Roadm	ap issues to be discussed more in SIG2	

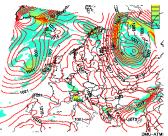
SIG3 PRIORITIES: Guidelines for Best Coupling Air-Pollutant and Transducer

SIG3-Leader:	 Prof. Giorgio Sberveglieri, University of Brescia, Brescia, Italy Prof. Eduard Llobet, Universitat Roviri I Virgili, Tarragona, Spain (<i>Rome and Cambridge Meeting SIG3 Chair</i>) 	
SIG3 Composition:	: 1 SIG3 Deputy and 20 Members	
	dentify which are the physical parameters being affected by gas/material nteraction (for a rationale design of the transducer)	
PRIORITY #2: C	Continuous measurements versus exposure/recovery measurements	
	Study of the best coupling of the air pollutants associated to a given transducer	
✓ ✓	 Case-studies: Common evaluation protocols for sensors (<i>sensor benchmarking</i>) Study the combination of <i>different transduction principles</i> to enhance selectivity Selection of <i>target applications</i> so specifications (i.e., sensitivity, selectivity, interference rejection, use of sample pre-treatment, response time, etc.) can be set 	

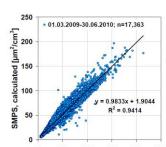
SIG4 PRIORITI	ES: E	cpert Comments for the Revision of the Air Quality Directive		
SIG4-Leader:		Dr. Thomas Kuhlbusch, IUTA eV, Duisburg, Germany		
SIG4 Composition:		1 SIG4 Deputy and 30 Members		
metho		or quality demands may be lower than those those of reference ds. Nevertheless, characterization is needed and specific data y requirements have to be set		
PRIORITY #2:	Modelling of urban air pollution and population exposure can be improved by sensors due to higher spatial resolution			
netwo		onia <i>being a precursor for PM</i> might be worth more attention: sensor rks could help in identifying sources; increasing controbutions from and other sources in particular situations (e.g., garbage boxes)		
		w of AQD implementation problems and proposals how these could geted by application of sensors		
PRIORITY #5:	✓ Nev✓ Dat✓ Use	 Recommendations on: ✓ New Metrics (e.g., Black Carbon) ✓ Data Quality Requirements ✓ Use for Model Improvements ✓ Specific Research Needed 		
		lines on <i>Data Quality Requirements</i> for sensors to be used in relation D (e.g, support indicative screening or complementary modeling)		
PRIORITY #7:	SIG4 a	addressing AQD revision planned for 2018 !		

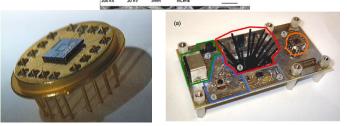
Challenges addressed by Action TD1105

- Nanomaterials for AQC sensors
- Low-cost Gas Sensors
- Low-power Sensor-Systems
- Wireless Technology (Environmental Sensors Network)
- Air Quality Modelling
- Environmental Measurements
- Standards and Protocols



propean Network on New Sensing Technologies for A


Pollution Control and Environmental Sustainability - EuNetAi



NSAM, measured [µm²/cm³]

Contact Details	MC Chair:	Dr. Michele Penza, ENEA, IT michele.penza@enea.it
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY	MC Vice Chair:	Prof. Anita Lloyd Spetz Linkoping University, SE spetz@ifm.liu.se
EUNETAIR European Network on New Sensing Technologies	Grant Holder:	Dr. Corinna Hahn, Dr. Juliane Rossbach Eurice GmbH, DE c.hahn@eurice.eu; j.rossbach@eurice.eu
CSO Approvat: 010000 20 ER	Scientific Secretary C	Dr. Annamaria Demarinis FrONE ! Dad Ramaria.demarinis@uniba.it
Kick-off Meeting: 16 May 2012	Science Officer:	Dr. Deniz Karaca deniz.karaca@cost.eu
Start of Grant:01 July 2012End of Grant:30 June 2016	Administrative Officer:	Dr. Andrea Tortajada andrea.tortajada@cost.eu
	Rapporteur ESSEM:	Prof. Kostantinos Kourtidis (GR) kourtidi@env.duttu.20
www.cost.eunetair.it	Rapporteur MPNS: CEASED	Prof parlim Manuel Vieira (PT) Vieira@cv.ua.pt
	Rapporteur CMST:	Prof. Antonio Lagana (IT) lagana05@gmail.com

http://www.cost.eu/domains_actions/essem/Actions/TD1105