European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

Special Session: Environmental Case Studies from Mediterranean, Central and Eastern Europe

Duisburg, Germany, 4 - 6 March 2013

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year: 2012-2013 (Starting Action)

Air quality monitoring system in Moscow: measurement methods and techniques

Olga Kislova

Invited Expert

Moscow, Russian Federation

"Mosecomonitoring"

TROITS

Background

•Moscow: more than 11 million population

(7% of population of the Russian Federation),

•around 27,000 stationary emission sources (506 enterpises)

(emissions – around 63,000 tonn/year),

•4.2 million vehicle fleet,

•main area – 1081km²,

•high building density.

•New territories to the south-west- 200,000 population,

1500 km² with no monitoring systems

•Capital status and aim to become an international financial centre –

•high importance of environmental information, its accessability

•No state standards for automatic air quality measurement

(federal monitoring network is based on manual sampling and manual
analytical methods),

Limited choice of certified and serviced monitoring devices

ZELENOGRAD

TROITSKY

NEAA

CAA

SAA

EAA

SEAA

-NAA

SWAA

WAA

NOVOMOSKOVSK

Objectives

- According to Moscow Law "On environmental monitoring in Moscow" the goals of environmental monitoring are:
- 1) to gather new information on environment for better city planning, road transport systems planning, land use and social-hygienic monitoring;
- 3) to disseminate environmental information;
- 4) to expose pollution sources and their input into pollution;
- 5) to estimate the effect of environmental protection measures and city development measures (including transport sector).

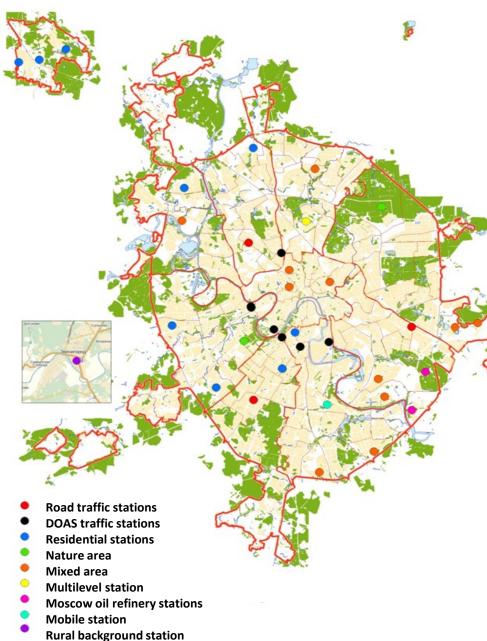
Principles

- Publicity, completeness, accuracy and credibility of acquired data,
- Compatibility with data of other information systems;
- Unity and compatibility of measurement methods, methods of data analysis and estimation;
- Scientifically based, systematic and integrated approach;
- Continuity and efficiency.

Requirements

1. Constant and reliable data

In order to estimate trends, mean long-time concentrations and carry out health risk assessment


Equipment requirements:

- RF compliance certificates;
- Type approval (welcomed);
- Reliable measurement methods;
- Equipment and maintenance costs;
- Assembly quality;
- Reliability;
- Maintenance and repair simplicity;
- Availability and qualification of service centre(s);

Requirements

- 2. Representativeness monitoring network requirements:
- Covers typical functional areas;
- Covers territories near main industrial enterprises and major roads.
- 3. Mobility & Efficiency monitoring network requirements:
- Includes stations which can be quickly shifted to a "hot spot";
- New substances can be added to the monitoring list if needed (ex. Natural fires in summer 2010);
- Data is constantly validated and verified (analytical department);
- Online Internet translation;
- Regular maintenance services.

Current activities: air quality monitoring network

38 automatic monitoring stations

Nº	Pollutants controlled	Number of stations
1	CO	30
2	NO2	35
3	NO	29
4	O3	18
5	PM10	8
6	PM2.5	2
7	SO2	11
8	NH3	2
9	H2S	5
10	Benzene	6
11	Toluene	6
12	Formaldehyde	6
13	Phenol	6
14	Styrene	6
15	Naphthalene	6
16	M-xylene,	6
17	P-xylene,	6
18	Ethyl benzene	6
19	Methane	16
20	VOC	16
21	VOC without 16	
	methane	
22	CO2 5	

Additional sources of information on air quality

Source of additional info	Activities		
Mobile air quality laboratory		Inspection of "troubles territories based on que by local authorities	
Chemical analysis laboratory		Air sampling to tac complaints of resid	
Research		Collection of information pollutants' concentration of information pollutants and the second	ions to improve

Facilities: mobile air quality laboratory

Automatic monitoring stations

Facilities: Automatic equipment

Pollutant	Model	Manufacturer	Measurement method	Number *
CO	CO12M	Environnement / France	ent / France Non-dispersive infrared spectrometry	
	K-100	OPTEK / Russia	Electro-chemistry	42
	9841B	Monitor Europe / Scotland		20
	30410	Ecotech / Australia		20
	200E	Teledyne-API / USA		2
NO/NO2/	ET-909	ETEK / Russia	Chemiluminescence	6
NOx	AC32M	Environnement / France		11
	APNA-370	Horiba / Japan-Germany		6
H2S	101E	Teledyne-API / USA		2
	AF22M/CH ₂ S (H2S & SO2)	Environnement / France	Fluorescence (with preliminary thermocatalitic transformation).	9
	APSA-H370	Horiba / Japan-Germany		6
SO2	9850B	Monitor Europe / Scotland		3
	APSA-370	Horiba / Japan-Germany	Ultraviolet fluorescence method	6
	AF22M	Environnement / France	Ollaviolet hubrescence method	2
	C105A	OPTEK / Russia		2
O3	9810B	Monitor Europe / Scotland		9
	400E	Teledyne-API / USA	Ultraviolet fluorescence method	2
	O342M	Environnement / France		2

Facilities: Automatic equipment

Pollutant	Model	Manufacturer	Measurement method	Number *
Hydrocarbons CHsum, CH4, HCH	Гамма-ЕТ	ETEK / Russia	Flame ionization (gas chromatography)	36
CO2	ОПТОГАЗ-500.4С	OPTEK / Russia	Infrared absorption	6
Ammonia (NH3)	9842B	Ecotech / Australia	Chamiluminasaanaa (with	1
	201E	Teledyne-API / USA	Chemiluminescence (with	2
	AC32M – CNH3	Environnement / France	preliminary thermocatalitic transformation)	2
	APNA-N370	Horiba / Japan-Germany	transformation)	6
Oxygen(O2)	T802	Teledyne-API / USA	Paramagnetic	3
PM10,	TEOM 1400A	Thermo Environmental	Tampered element oscillating	11
PM2,5	TEOM 1405D	Instruments Inc./ USA	microbalance	3
	SM-200	OPSIS / Sweden		20
	MP101M	Environnement / France	Poto gouro	2
	F-701-20	Verewa / Germany	Beta-gauge	1
	Даст	Monitoring/ Russia		10
	EDM-180		Nofolomotry	3
	EDM-107	GRIMM / Germany	Nefelometry	1
NO ₂ ; SO ₂ ; O3; Benzene, toluene, formaldehyde, phenol, naphthalene, styrene, xylene	AR-500	OPSIS / Sweden	Differentiated optical absorbtion spectroscopy	15

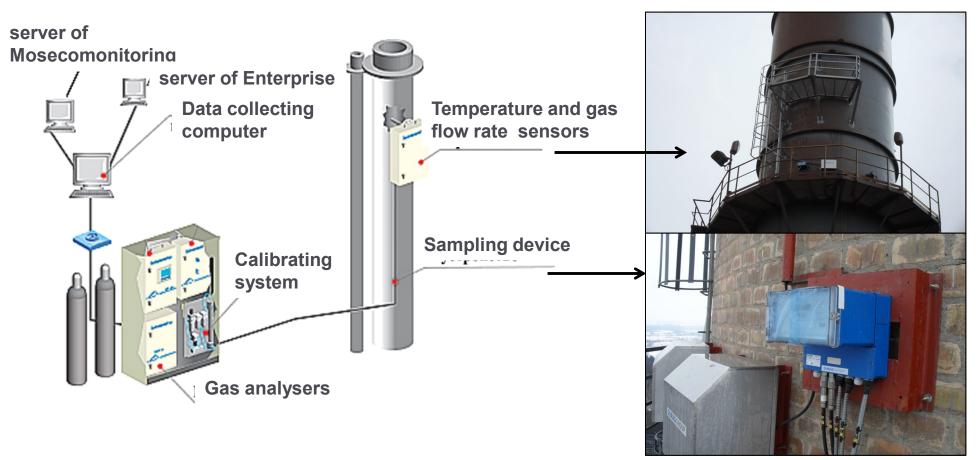
+ analytical laboratory (more than 100 substances)

10

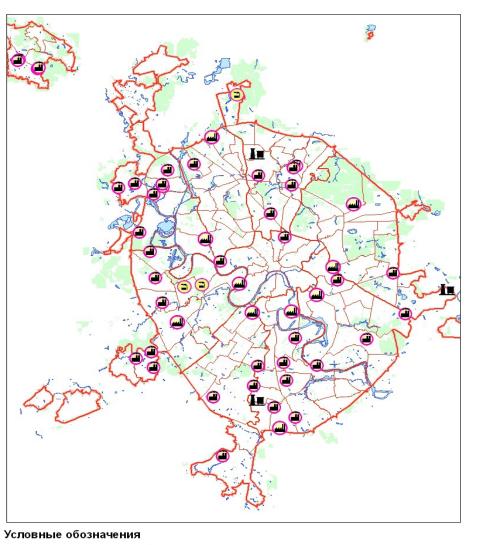
Facilities: equipment selection

Device	Manufactur er	Controlled pollutant	Error-free running time, days	Average time spent in repair, %	Decisions
ET-909	ETEK, RF	NOx	30	40%	Replaced by other equipment in 2003
ME-9841B	Monitor Europe	NOx	180	5%	Actively used since 2003
Палладий -3	Analitpribor RF	СО	7	20%	Replaced by other equipment in 2003
K-100	OPTEK, RF	СО	-	-	No failures. Actively used since 2003
ДАСТ	Monitoring RF	PM10	30	50	Replaced by TEOM by 2008
Теом1400 а	Thermo Electron, USA	PM10	-	6	Actively used since 2004

Facilities: chemical analysis laboratory



Facilities: tailpipe emission monitoring

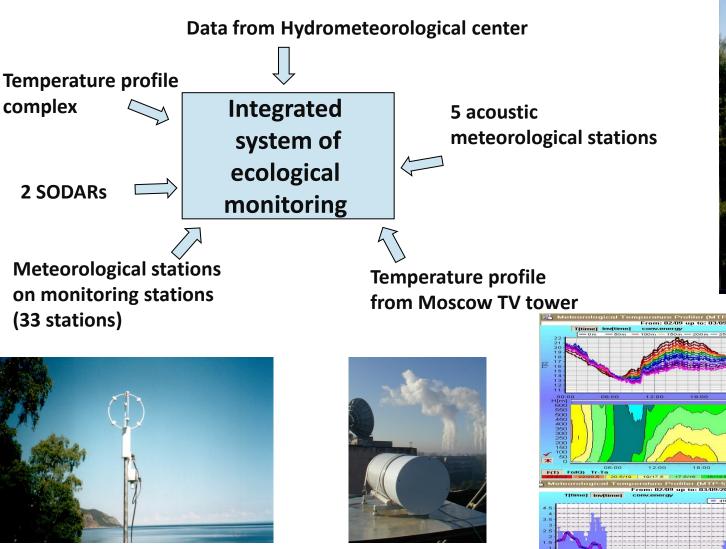

Controlled parameters: NO, NO₂, CO, HCI, particulate matter, O₂, temperature, gas flow rate

Tailpipe emission monitoring system

58 industrial enterpises

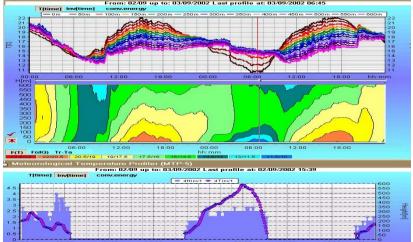
175 emission sources

213 monitoring systems

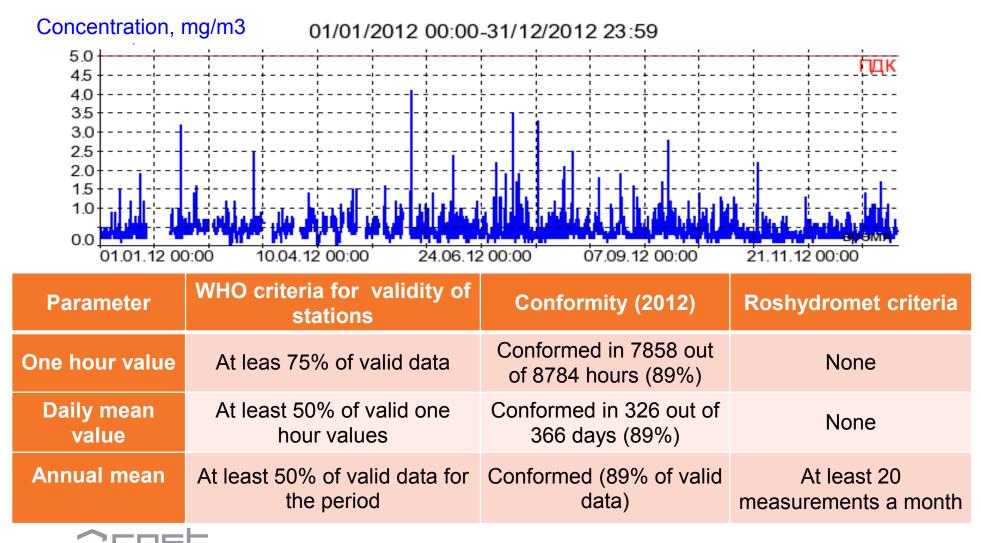

ТЭЦ

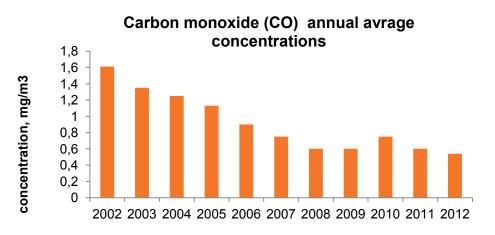
PTC

🖹 КТС



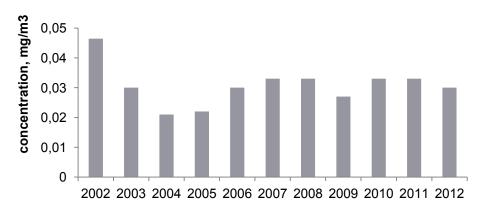
Facilities: Meteorological complex

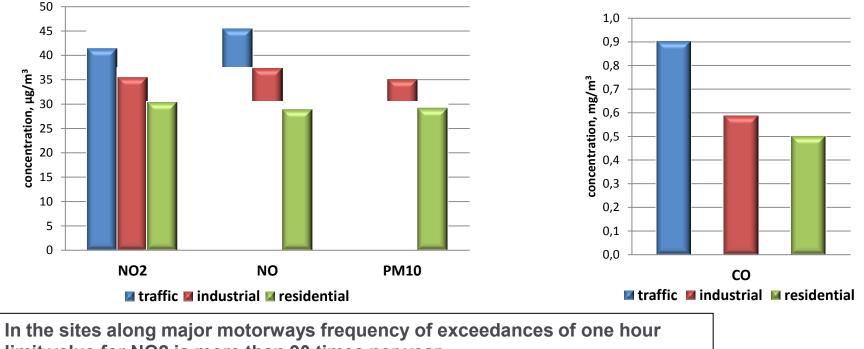



Results: proportion of valid data

Example: CO data on one of the stations (2012)

Results


Database on air quality since 2002 (10 years)

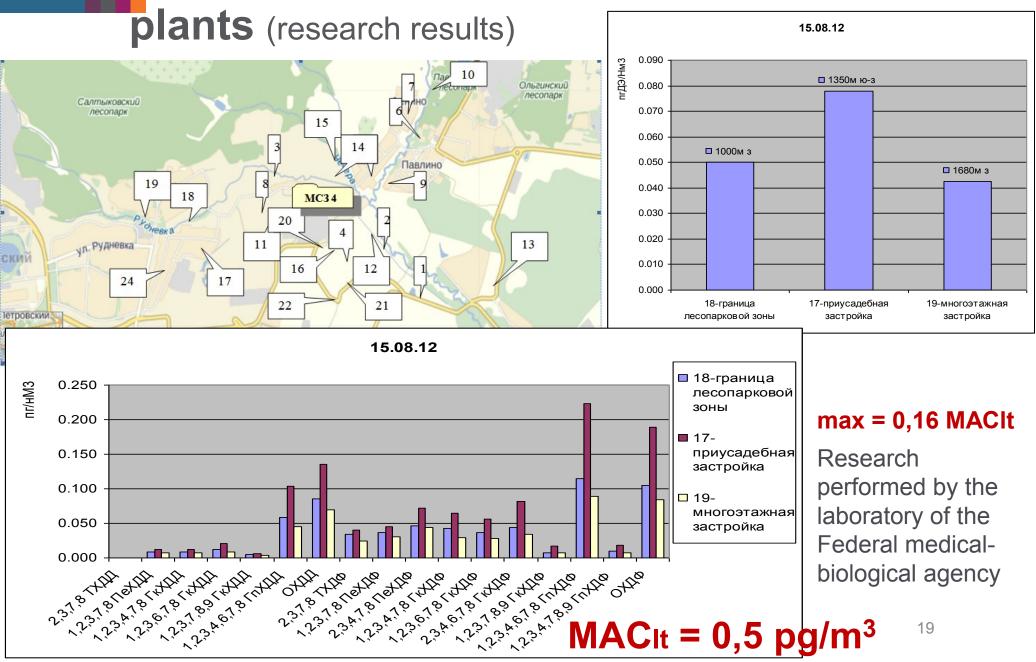

Nitrogen dioxide (NO2) annual average concentrations

Ozone (O3) annual concentrations

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Main results of air quality monitoring in Moscow*

limit value for NO2 is more than 90 times per year.


In the residential sites one hour limit value is exceeded less than 10 times per year.

Annual average PM10 concentrations in Moscow vary from 27 to 43 µg/m3. 24-hour average concentrations exceed EU limit value more than 40 times

European Union limit values and Russian maximum allowable concentrations of carbon oxide and sulfur dioxide are not usually exceeded.

* Data as of 2011

Dioxins concentrations near incineration

Results: achievement of typical goals of environmental monitoring

Goals	Achievement analysis
Limit values (MAC) compliance assessment	+
Information of public about air quality and development of a system of early information about adverse weather conditions (heat) and severe air pollution	+
Objective data for action planning, city and transport planning use	+
Environmental information for health risk assessment	+
Pinpointing pollution sources and their inputs in pollution levels	-+
Pinpointing factors endangering ecosystems	-+
Development and applicability assessment of air quality models based on geoinformation systems	+
Development of statistical air pollution forecasts	+

Future planned Activities

- Comparison of PM10 equipment performance (different measurement methods);
- Development and improvement of air quality forecasts (both statistical and meteorological - chemical transformation modelling) with verification by monitoring data;
- Routine elemental analysis of PM in ambient air in Moscow;
- Expansion of monitoring network on new territories of Moscow (using mobile automatic stations);

Future planned Activities

- Expansion of PM10 and PM2.5 monitoring networks;
- Participation in intercomparison exercises;
- Examination of potential to organise manual sampling and analysis of some of the polycyclic hydrocarbons and dioxins;
- Development of a system of early information about adverse weather conditions (heat) and severe air pollution based on the system of air quality forecasts;
- Trial of new measuring equipment

CONCLUSIONS

• CONCLUSIONS:

- A reliable monitoring network is set up in Moscow allowing both efficient information on air quality to residents and feed for research
- Problems

- Not always good quality transfer standards
- No reliable automatic equipment measuring cyclic and polycyclic hydrocarbons
- No legislative base for emission inventory (several not cooperating government bodies, no databases on emissions and enterprises)

www.mosecom.ru/hannover

