European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

Third Scientific Meeting – Istanbul, December 3-5, 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (Ongoing Action)

Plenary Session 1: Indoor Environment Quality Applications Selective VOCs Detection in the ppb Range for Demand Controlled Ventilation

WG2 leader, MC member

Saarland University / Germany

schuetze@LMT.uni-saarland.de

Why worry about indoor air?

- Safety
 - Gas leak detection (combustible gases, e.g. CH₄)
 - Fire detection (various gases)
 - Hazardous gas detection (e.g. CO)
- Malodor detection (kitchen & bathroom ventilation)
- HVAC systems
 - Reduced air circulation for greatly reduced energy consumption
 CO₂ monitoring for fresh air
 - Mold detection / prevention
 - Increased levels of VOCs lead to sick building syndrome

Selective (formaldehyde, benzene etc.) and sensitive (ppb level) detection

Systems have to be adapted to the specific room use scenario

VOC-IDS: Volatile Organic Compound Indoor Discrimination Sensor

- Transnational project funded within MNT-ERA.net
- Selective VOC detection, primarily formaldehyde, benzene
- Novel ceramic nanomaterial metal-oxide semiconductor gas sensors
- Intelligent signal processing based on temperature cycling
- Networked systems connected to KNX bus

SENSIndoor: Nanotechnology based intelligent multi-SENsor System with selective pre-concentration for Indoor air quality control

- EU-FP7 project NMP.2013.1.2-1: Nanotechnology-based sensors for environmental monitoring
- Microtechnology based approach for MOS and SiC-GasFET sensors
- Pre-concentration to boost sensitivity and selectivity
- Integrated multi-sensor approach
- Application specific priorities and field tests

Scenario specific detection of hazardous VOC Integration of sensor system into KNX building automation networks

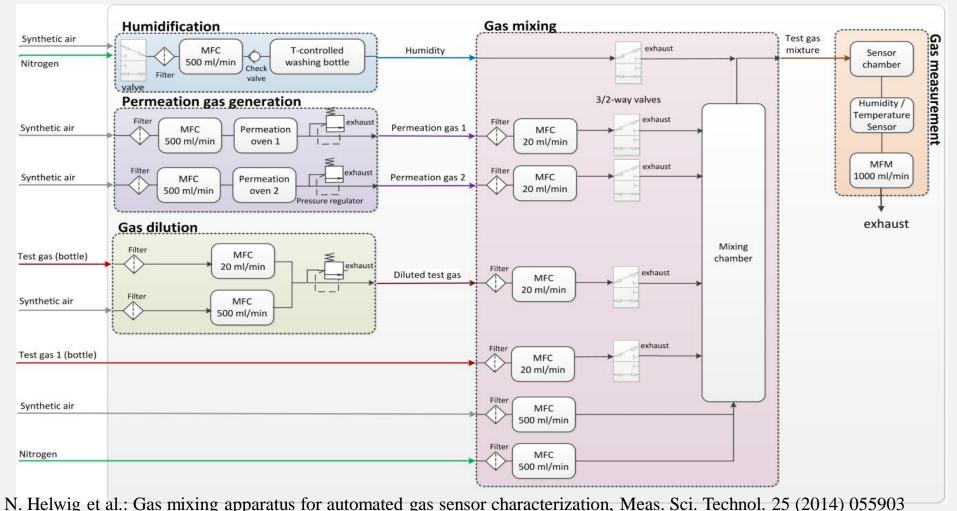
Volatile Organic Compound Indoor Discrimination Sensor

WP2: Solid State Sensor development - UST WP1. Definition WP6: Evaluation under lab WP8: WP3: Develop. of data and field conditions - LMT of target Evaluation processing algorithm - LMT of air gases and functional renewal WP4: KNX interface specifica-WP7: Development of sensor strategies definition - Weinzierl calibration system - 3S ALDES tions -IDMEC-FEUP WP5: Sensor electronics & software dev. - NanoSense

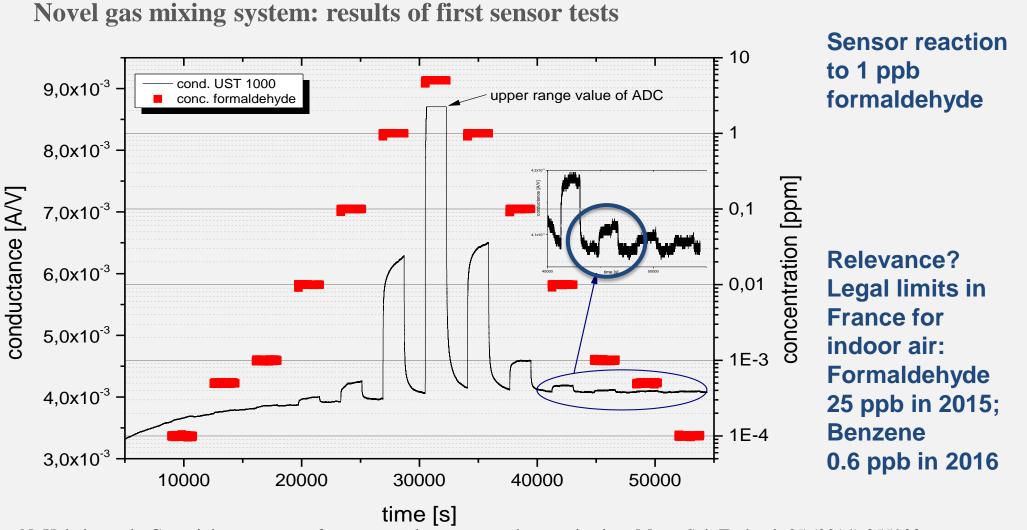
WP9: Project coordination (incl. joint IPR strategy, input to standardization, dissemination) - LMT

> Indoor Air Quality monitoring

MNT-ERA.net project VOC-IDS



First step: novel gas mixing system for VOC testing/calibration @ (sub) ppb-level



Gas mixing system: results of reference measurements (zero air)

compound	CAS no	c [µg/m³]	c [ppb]
benzene	71-43-2	0.17	0.053
toluene	108-88-3	0.06	0.016
chlorobenzene	108-90-7	0.26	0.056
camphene	79-92-5	0.29	0.052
benzaldehyde	100-52-7	0.2	0.046
phenol	108-95-2	0.3	0.06
benzonitrite	100-47-0	0.61	0.144
octanal	124-13-0	0.1	0.019
benzyl alcohol	100-51-6	0.19	0.043
acetophenone	98-86-2	0.62	0.126
naphthalene	91-20-3	0.24	0.046
bicyclol[2.2.1]-	465-30-5	16.2	2.6
heptane,2-chloro-			
2,3,3-trimethyl			
TVOC		24.3	

N. Helwig et al.: Gas mixing apparatus for automated gas sensor characterization, Meas. Sci. Technol. 25 (2014) 055903

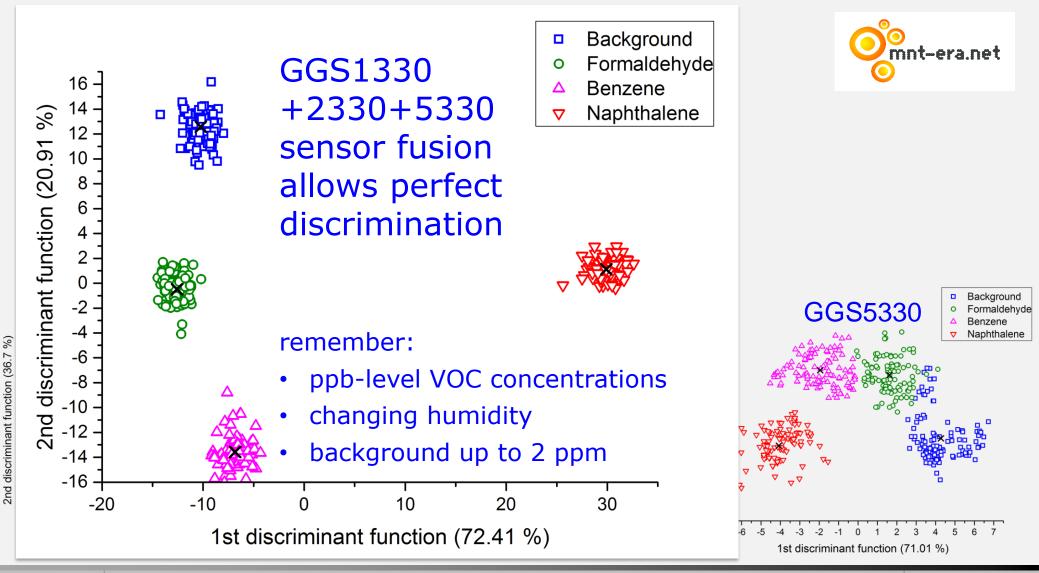
N. Helwig et al.: Gas mixing apparatus for automated gas sensor characterization, Meas. Sci. Technol. 25 (2014) 055903

MNT-ERA.net project VOC-IDS

2, 20

Naphthalene

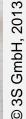
- Example for selective detection of VOCs in interfering background
 O
- Classification of formaldehyde, benzene, naphthalene in the presence of ethanol **Concentration (ppb)** humidity Interferents (EtOH ppm) target gas Air NA 40%, 60% none, 0.4, 2 Formaldehyde 10, 100 40%, 60% none, 0.4, 2 Benzene 0.5, 4.7 40%, 60% none, 0.4, 2


40%, 60%

none, 0.4, 2

Classification target	interferent concentrat.	relative humidity	number of LDA steps for charac.	Estimated # of LDAs		
generalized classification	0, 0.4, 2	40%, 60%	1	1		
classification w known r.h.	0, 0.4, 2	known	1 (2)	(1+) 5*1		
classification w known EtOH	known	40%, 60%	2	1+10(?)*1		

> IAQ monitoring with MOS sensors

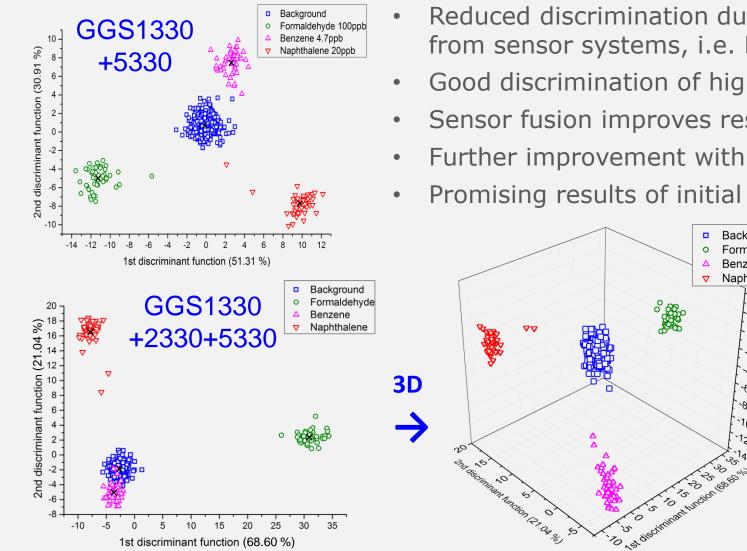

M. Leidinger et al.: Selective Detection of Hazardous Indoor VOCs Using Metal Oxide Gas Sensors, Dec. 3, EUROSENSORS 2014. talk C1L-B02

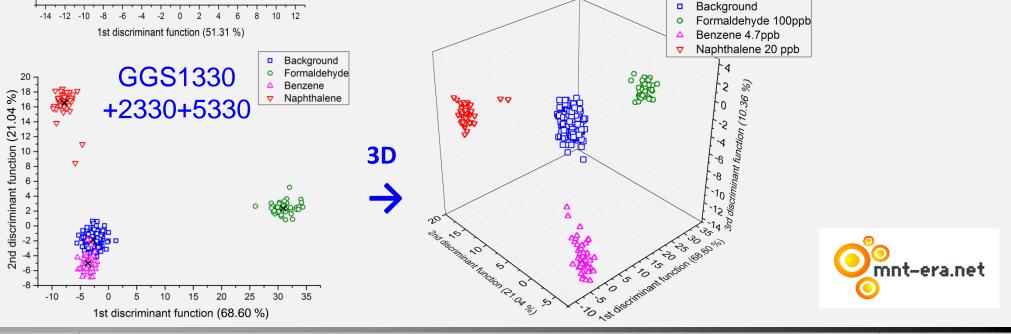
M. Leidinger et al.: Selective Detection of Hazardous Indoor VOCs Using Metal Oxide Gas Sensors, EUROSENSORS 2014, talk C1L-B02

> IAQ monitoring: field test systems

- Stand-alone field test systems by 3S GmbH (Saarbrücken, Germany)
- 2 MOS gas sensors (+ CO₂ + humidity) with independent temperature control
- Data storage on SD card
- Same test gas profile as for sensors only

Setup for system calibration



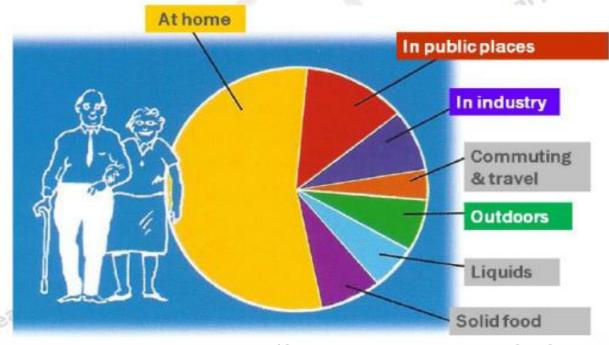


> IAQ monitoring: field test systems

- Reduced discrimination due to VOC background from sensor systems, i.e. PCB, plastic housing
- Good discrimination of higher VOC concentrations
- Sensor fusion improves results considerably
- Further improvement with 3D LDA
- Promising results of initial field tests

Dec. 3, 2014

M. Leidinger et al.: Selective Detection of Hazardous Indoor VOCs Using Metal Oxide Gas Sensors, EUROSENSORS 2014. talk C1L-B02



Core motivation for the SENSIndoor project

GUIDELINES FOR HEALTH-BASED VENTILATION IN EUROPE - HEALTHVEN

Indoor air is significant contributor to life-time exposures

14 December 2014

Motivation

Core motivation for the SENSIndoor project

GUIDELINES FOR HEALTH-BASED VENTILATION IN EUROPE - HEALTHVENT

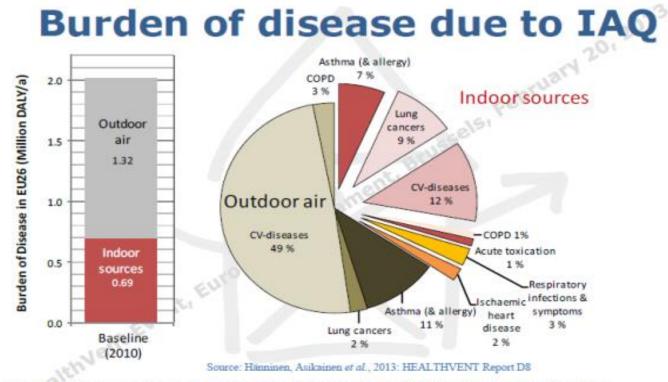
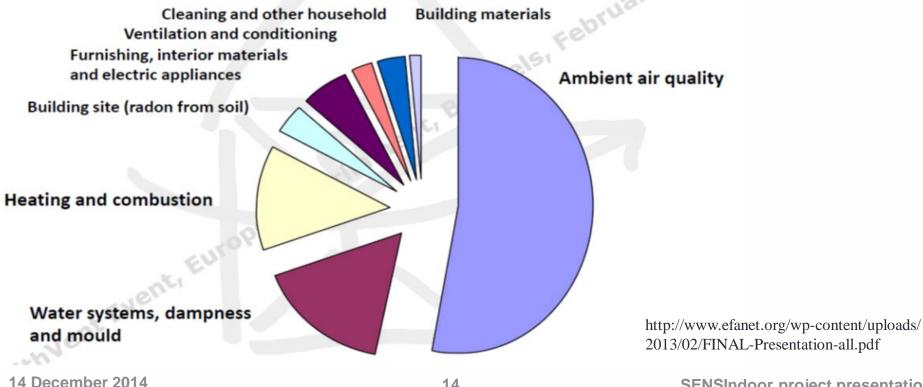


Figure 1. Burden of disease at the baseline (2010) in EU-26 divided into indoor and outdoor source components (left) and fractions associated with different diseases (right).

resentation

JAC


14 Decembe

Motivation

Core motivation for the SENSIndoor project

2 Mio healthy life years are lost every year in the EU due to indoor exposure according to an analysis in the EU project EnVIE

SENSIndoor project presentation

Motivation

- People spend more than 80 % of their time indoors where fresh air exchange is increasingly limited to reduce energy consumption.
- Indoor air pollution contributes significantly to the global burden of disease.
- Continuous ventilation would greatly increase energy consumption for HVAC (heating, ventilation, air conditioning) systems.
- Low-cost sensor systems are required to provide ubiquitous Indoor Air Quality (IAQ) monitoring.
 - Core motivation for the SENSIndoor project

Sensor system requirements 1

- Detection of hazardous indoor air pollutants at relevant levels
 - key target pollutants are VOCs, i.e. formaldehyde, benzene,...
 - target concentrations are ppb and sub-ppb level

extremely high sensitivity required

	2012						2013 2015					2016			2023				
	MAK work place (8 hours) TRK work place (15 mn)		Domestic (MAK/3) 24h/24h		Fren	French decree n° 2011-1727 of 2/12/2011 long-term guide value for public bu						buildi	ings						
	ppm	mg/m3	ppm	mg/m3	ppm	ppb	mg/m3	ppm	ppb	µg/m3	ppm	ppb	µg/m3	ppm	ppb	µg/m3	ppm	ppb	µg/m3
Formaldehyde	0.5	0.615	1	1.23	0.17	166.67	0.21				0.024	24.39	30.00				0.008	8.13	10.00
Benzene	1	3.25	1	3.25	0.33	333.33	1.08	0.00154	1.54	5.00				0.00062	0.615	2.00			

- In addition: many other interfering gases/VOCs
 - benign, e.g. ethanol, air freshener (much higher concentrations!)
 - unpleasant, but not hazardous, e.g. isovaleric acid
 - other background gases, e.g. CO, O₃, NO_x, ammonia, ...

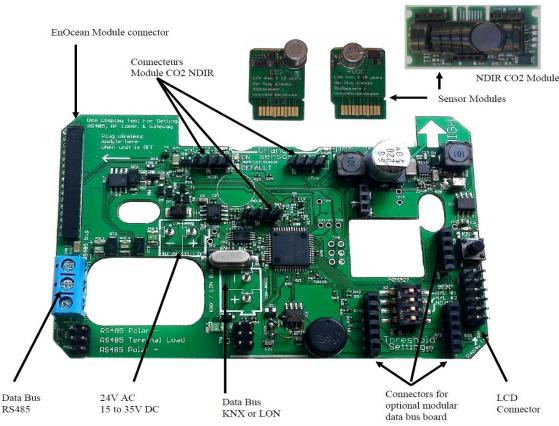
extremely high selectivity required

Sensor system requirements 2

- Demand controlled ventilation to achieve optimal compromise between energy efficiency and health benefits adapted to specific application scenarios
 - room-specific measurements required
- Significant contribution to EU 20-20-20 goals and health aspects of IAQ targeted
 - biquitous measurements required

Core challenges addressed with micro- and nanotechnologies

- microtechnologies for low cost mass production (and low power consumption)
- nanotechnologies for unrivalled sensitivity and selectivity



State-of-the-art

- Demand controlled ventilation today
 - mostly CO₂ monitoring, at best total VOC (TVOC)
 - CO₂ based on IR absorption or solid state electrolyte
 - TVOC based on metal oxide semiconductor (MOS) sensors

E4000 Air Quality Probe (NanoSense SARL)

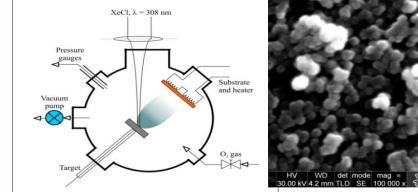
14 December 2014

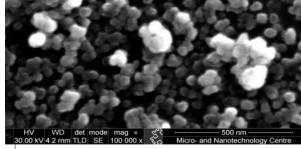
SENSIndoor project presentation

SENSIndoor origins

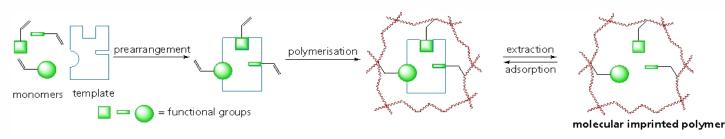
- VOC-IDS (MNT-ERA.net collaborative project) Volatile Organic Compound Indoor Discrimination Sensor
 - Partners: USAAR-LMT, IDMEC-FEUP Instituto de Engenheria Mecânica, University Porto (P), UST Umweltsensortechnik GmbH (D), 3S GmbH (D), NanoSense SARL (F), Weinzierl Engineering GmbH (D), CIAT - Compagnie Industrielle d'Application thermique S.A. (F), ALDES Aéraulique S.A. (F)
- COST action TD1105 EuNetAir

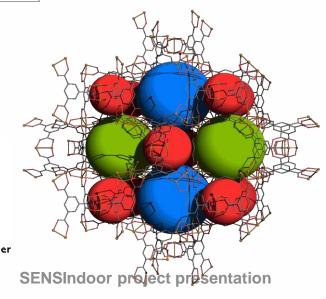
European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability


- Partners: U Linköping (A Lloyd Spetz: vice chair of action), U Oulu, USAAR, 3S GmbH, SenSiC AB, SGX Sensortech S.A.
- Several topics identified to be addressed in call NMP.2013.1.2-1
 Nanotechnology-based sensors for environmental monitoring

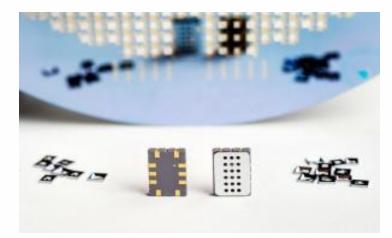


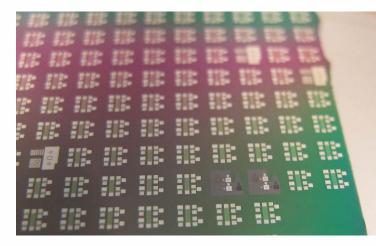
SENSIndoor technologies 1


- Nanotechnology for improved sensor elements
 - Pulsed Laser Deposition (U Oulu, Picodeon)


for novel, highly sensitive gas-sensitive layers suitable for wafer level mass production

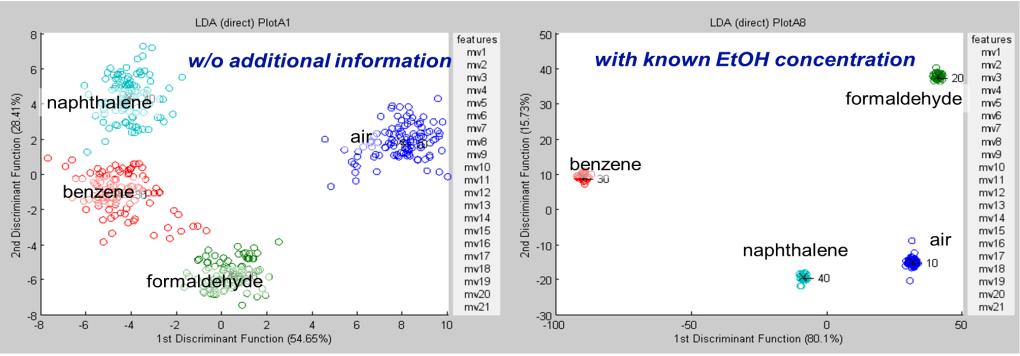
- **Selective pre-concentration** (*FhG-ICT*)
 - based on MOFs (metal-organic frameworks) \rightarrow and MIPs ψ (molecular imprinted polymers)





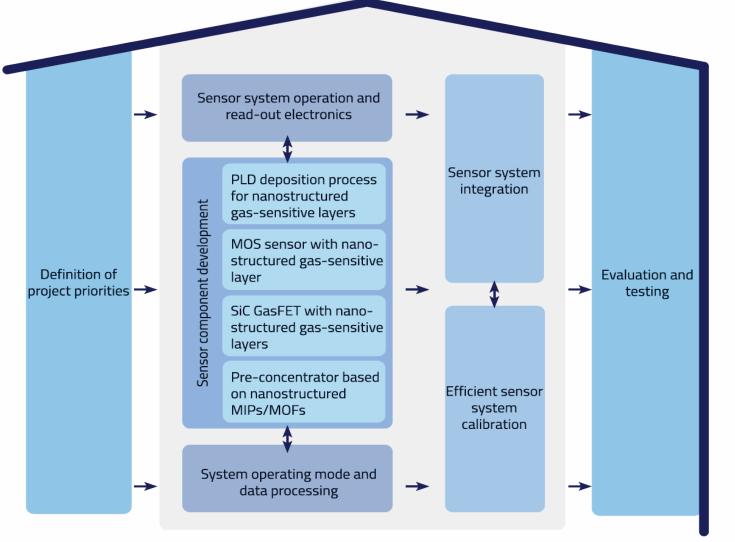
SENSIndoor technologies 2

- Sensor technologies
 - MOS Metal oxide semiconductor (SGX Sensortech, USAAR-LMT)
 - well known for high sensitivity and robustness @ low-cost
 - MEMS technology for mass production and low power consumption
 - GasFET Gas-sensitive Field Effect Transistors (*LiU*, *SenSiC*)
 - complementary technology (polarity ⇔ reaction)
 - SiC technology for chemical robustness and high operating temperatures



14 December 2014

SENSIndoor technologies 3


- Dynamic operation and intelligent signal processing
 - Temperature Cycled Operation (USAAR-LMT, NanoSense, 3S) to increase selectivity ("virtual multisensor") and stability

SENSIndoor overview

Project structure: A clear road from application requirements to field evaluation

03.12.2014 COST action TD1105 EuNetAir – 3rd Scientific Meeting - December 3-5, 2014, Istanbul Slide

Insulator

p-type epilayer

H₂O CO₂ NO₂

> IAQ monitoring w GasFET sensors

- SiC Field Effect Transistors
 - Porous gate contacts (Pt, Ir)
- Gas interaction with the gate and insulator
 - Additional (internal) gate bias
- Shift in IV curve

n-type active layer

p-type buffer layer

n-type 4H-SiC substrate

7/77

 I_{D}

V_{DS} +

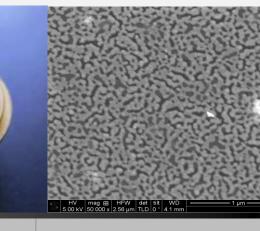
7/77

Measured at constant current ID or voltage VDS

NH₃ CO

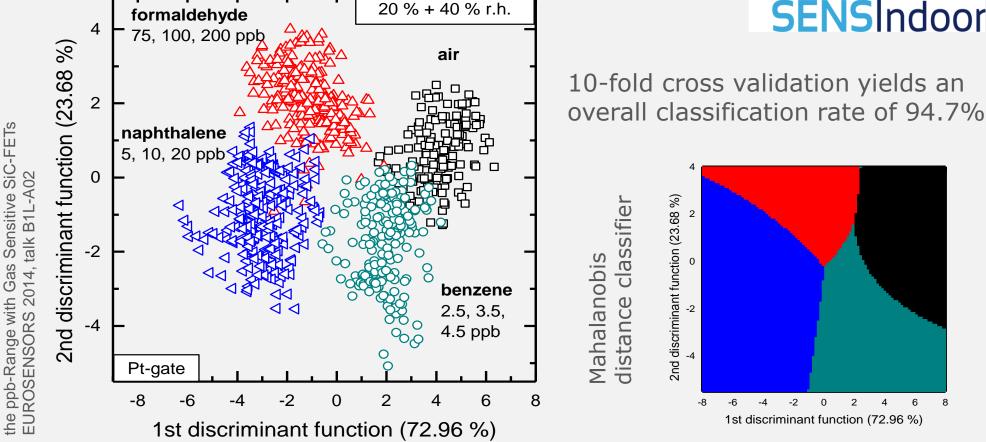
H₂ O₂ NO

- Selectivity enhancement by dynamic operation
 - Temperature Cycled Operation (TCO)


7/77

• Goals: VOC discrimination and quantification

Joint PhD project of Christian Bur in collaboration with Linköping University, Prof. Anita Lloyd Spetz

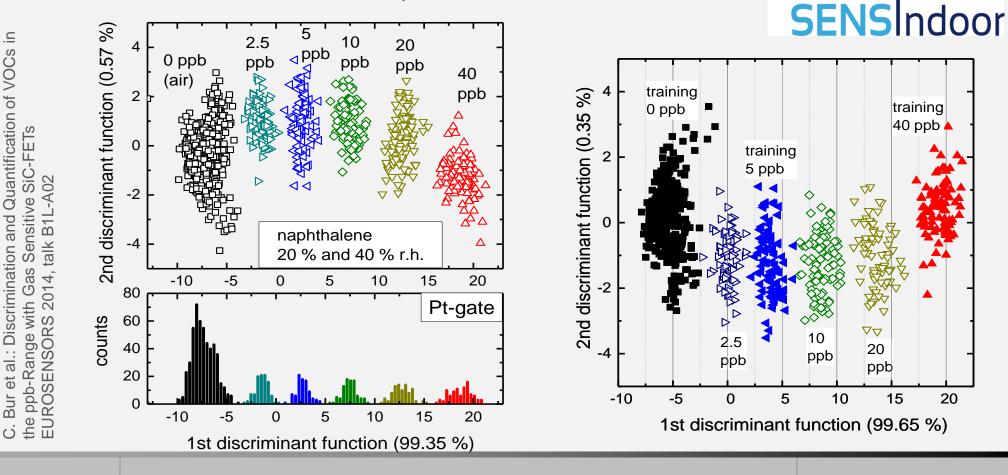


- **Discrimination** tested with 3 concentrations per VOC
- Tests performed at 20 % + 40 % r.h.

Quantification of VOCs in

et al.: Discrimination and

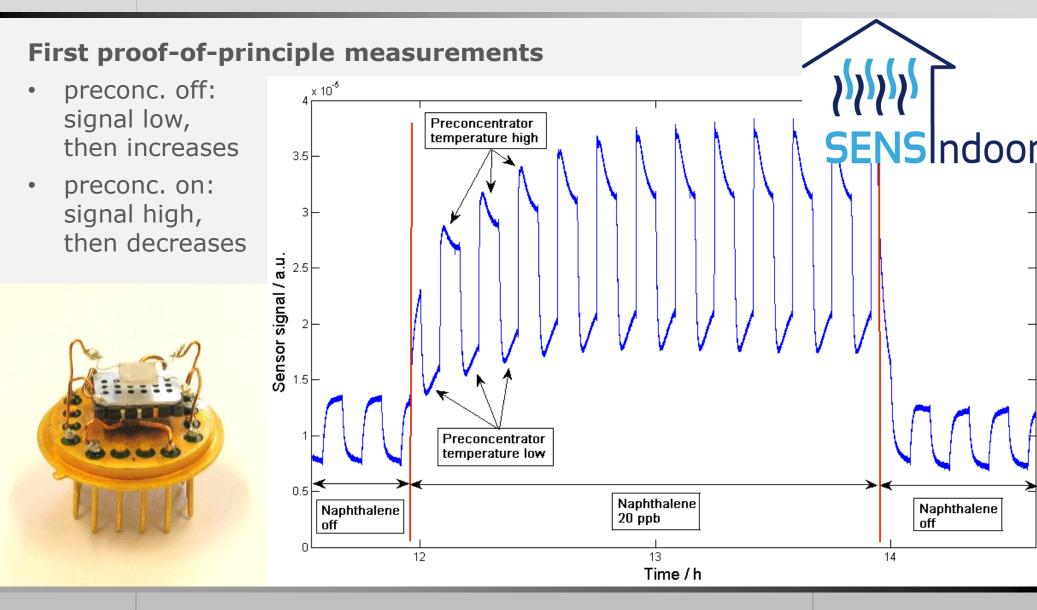
Bur



03.12.2014 | COST action TD1105 EuNetAir – 3rd Scientific Meeting - December 3-5, 2014, Istanbul Slide |

> IAQ monitoring w GasFET sensors

- Quantification tested with Naphthalene
- 5 concentrations 2.5 to 40 ppb @ 20% and 40% r.h.
- Calibration based on 2 conc., evaluation with 3 others



> µ-pre-concentrator: proof of concept

CONCLUSIONS

• CONCLUSIONS:

- Both MOS and GasFET sensors highly sensitive for VOC
- TCO allowing discrimination and quantification
- Micro- and nanotechnologies for excellent functionality at low cost
- µ-pre-concentrator promising concept for IAQ applications
- Ubiquitous low-cost sensor systems for IAQ realistic
- OUTLOOK:
- Extensive field testing required: calibration and reliable operation
- Priority application scenarios: schools/kindergarten, refurb. homes

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir

COST Action TD1105

Third Scientific Meeting – Istanbul, December 3-5, 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (*Ongoing Action*)

Selective VOCs Detection in the ppb Range for Demand Controlled Ventilation

Andreas Schütze

WG2 leader, MC member

Saarland University / Germany

schuetze@LMT.uni-saarland.de

