European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

WGs and MC Meeting at ISTANBUL, 3-5 December 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (Ongoing Action)

Smart Calibration for Successful European Gas Sensor Production

Ingrid Bryntse WG4 Leader,

SenseAir AB / Sweden

New calibration system for sub-ppm sensors

- Three Swedish companies Autoliv, SenseAir, and Hök Instrument have designed a new NDIR platform for ethanol and CO₂ measurements, aiming at a future Alcolock for traffic safety
- The new sensor platform and calibration system is also suitable for greenhouse or hazardous gases: NH₃, N₂O, H₂O₂, O₃, CH₄, hydrocarbons, freons...
- A corresponding novel Alcolock Prototype Calibration System was built at SenseAir supported by our partners and Vinnova (Sweden's Innovation Agency)

Long Path Length NDIR platform

The Long Path Length "LPL" Platform has shrinked

New cuvette length ~ 1 m

Novel Alcolock prototype

- >50 % smaller
- More robust materials
- Improved mirror coating
- Temperature stable gas cuvette
- Optimised PCB design
- Carefully chosen key components
- Two perpendicular channels

An improved sensor requires a perfect calibration system!

- The total accuracy of any calibration system must be >3x "better" than the sensor requirements
- It demands full parameter control: temperature, pressure, chamber gas concentration, measurement period, statistics, reference gas quality, system leakage, gas / vapor generation system, carrier gas / compressed air

Calibration system improvements

- Flexible, universal
- Future compatible = scaleable
- Modular
- Minimized nr of interruptions
- 100% traceable
- Internal size and air flow optimized for pallets
- Temp range +5 to +95°C
- CO₂ range 0 to 50 000 ppm (5%)
- EtOH range 0 to 500 ppm
- Separate calibration of CO₂ and EtOH in first demonstrator

Calibration System initial goals

Humidity	Zero humidity in gas containing parts (pipes, KK, ref sensor cabinet)
Temperature stability	Temperature accuracy ± 1°C or better at a particular temp / long time studies
Temperature points	25, 50 and 80°C
EtOH concentrations	0±5, 200±6, 500±15 ppm
CO ₂ concentrations	0±20, 15 000±450, 30 000±900 ppm
Process time	Full calibration time including verification < 4 h

HW design of pallet, controlling and communicating sensor carrier

Calibration EtOH & CO₂

Full traceability

Individual serial number with complete traceabillity and history of batch & calibration data

Large temperature control system

Large temperature control system

- Temperature stability in chamber < 0.5°
- Temperature control from large external equipment

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Improved reference sensors for gas control

- Extremely **stable** materials
- Well hidden in temp stabilized closet
- Three parallel sensors for each gas

Air flow in new ethanol reference sensor

CO₂ reference meter for low concentrations (0-2000 ppm)

- 30 cm optical path length
- Mechanically improved design

Analysis of reference gas; Non-approved

Analysis of reference gas; Approved

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Vapor generation 1, bubbling module

Vapor generation 1, bubbling module

Vapor generation 2, nanopump system

Standard pumping mode

Concentration variation near gas generator system and in chamber volume

Respons time for system

24

Complete production run

Spread in EtOH values after calibration

Other gases suitable for this platform

Other greenhouse or hazardous gases:

- NH₃
- N₂O
- H₂O₂
- **O**₃
- CH₄
- hydrocarbons
- freons

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Methane Detectors Challenge for EDF

http://www.edf.org/sites/default/files/mdc_selection_factsheet_final.pdf

PPM-Level Leak Detection for Methane: Two firms adept in gas sensor development, Honeywell and the company's RAE Systems gas detection product division, and SenseAir AB, are adapting a handheld alcohol sensor and integrated continuous sampling system for low parts-permillion (PPM) methane and hydrocarbon detection.

This joint effort by Honeywell, a Fortune 100 company based in Morristown, New Jersey, and SenseAir, a firm from Delsbo, Sweden, with 25 years of gas-sensing experience and more than 20 U.S. and European patents in the field, provides an integrated systems approach matched with low costs and good leak detection performance.

Methane analysis for fracking industry in USA

Conclusions

- A prototype research park for testing calibration models was built
- The first experiments show that the initial goals were met
- A modular production system opens up for all new gases that are suitable for the improved LPL design

