European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - TD1105

WGs and MC Meeting at ISTANBUL, 3-5 December 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year 3: 1 July 2014 - 30 June 2015 (*Ongoing Action*)

Action Start date: 01/07/2012 - Action End date: 30/06/2016 - Year 3: 2014-15 (Ongoing Action)

Application of MEMS CMOS Broadband Infrared Emitters and Detectors for Compact NDIR CO₂ Censing

Dr. M Foysol Chowdhury, Julian Gardner and Florin Udrea Function in the Action: (WG Member) Cambridge CMOS Sensors, United Kingdom

Contents

- Need for compact CO2 Sensor
- State-of-the-art Solutions
- Some Compact NDIR CO₂ Sensors
- Problems with Current Solutions
- Components used in NDIR Sensor
- Some key issues
- Construction of Compact NDIR Sensor
- Initial Measurement Results/Improvements
- Miscellaneous
- Conclusion

Need for Compact CO₂ Sensor

- Environment
- Indoor Air Quality
- Process control
- Medical diagnosis
- Internet of Things

State-of-the-art solutions

- Metal Oxide
- Thermal conductivity
- NDIR

Heating voltage (V _H)	3.0 DC
Heating current (mA)	Approximately100
Response time (90%)	10s
Recovery time (90%)	30s
Dimensions (mm)	10 × 14 × 18mm

Some Compact NDIR CO₂ Sensors For HVAC applications

The H-550 CO2 sensor module is the world's smallest and lightest NDIR CO2 sensor module and can be widely installed into the home network, ventilation, controllers, wall-pads, robots, cars and many other devices to control air quality.

Environment Leading Technolo

www.tccelt.co.kr

YOUR PARTNER IN SENSOR TECHNOLOGY

The digital interface of the CO2 sensor module and the minimal-sized design permit very easy integration into devices, e.g. for demand controlled ventilation or data loggers.

T-100 is the claimed to be world smallest CO2 sensor module

SprintIR™

High Speed Carbon Dioxide Sensor

ELEKTRONIK

SprintIR is a high speed (20 Hz) CO₂ sensor, ideally suited for applications which require capture of rapidly changing CO2 concentrations including metabolic assessment and analytical instrumentation.

- High speed sensing (20Hz)
- Measurement ranges from 0 to 100%
- 3.3V supply
- Low power requirement 35mW
- Flow through adaptor now available

The world's smallest NDIR CO₂ sensor

SenseAir presents the world's smallest CO₂ sensor, SenseAir® S8, which despite its small size has the same excellent performance as SenseAir's other sensors.

Problems with Current Solutions

- Metal Oxide/Thermal conductivity:
 - Indirect measurement Correlation between VOC
 - Selectivity
 - Stability
 - Reliability
 - Low cost
- NDIR
 - Direct measurement
 - Complex
 - Bulky
 - Relatively expensive
 - But most reliable method of measuring CO₂

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Non-Dispersive Infrared (NDIR) based on Beers Law

where:

- = Transmittance of light through the gas to the detector
- = light intensity after absorption by CO_2
- Io = light intensity at zero CO_2 concentration
- a = specific CO_2 molar absorption coefficient
- x = path length
- $C = CO_2$ concentration

How compact NDIR CO₂ be made?

- $I/Io = e^{(-axC)}$ Rearranging this equation:
- In(I/Io) = axC Rearranging this equation:

 $C = (In(I/Io))/(a^*x) \text{ or } x = (In(I/Io))/(a^*C)$

I and Io - are measured by detector (SNR of the instruments readout)

a - is a constant CO_2 molar absorption coefficient at a wavelength of 4.26 μ m

x - path length of the detection cell
– essentially higher the C shorter the path length

It can be shown that for:

5000ppm minimum x needed is at lease 30mm (Environment) 50000ppm x can be < 10mm (Breath analysis)

Components used in NDIR

- Micro-bulb
- Thermopile or Pyro detector
- Optical filter
- Optical Path with reflectors
- Electronics

Issue of Optical Alignment

Parabolic reflector X/Y/Z alignment

Micro-bulb – large tolerance

MEMS IR Emitter/Detector 1mm x 1mm die

Example of packaged MEMS IR Emitter/Detector

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

MEMS IR Emitter

1mm

Emitter is capable of:

- High Temperature (>500°C), High stability (< 1%)
- High reproducibility (99% Yield)
- High reliability (>5 years)
- Miniature device 1mm x 1mm die
- < 30ms transient
- Fast switching (> 20Hz vs 5Hz(micro-bulb)

Point source

~1mm

298 353.204 408.407 463.611 518.814 325.602 380.805 436.009 491.212 550.359

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Optical Filter Issues

Any design should account for worse case.

Spectral absorption profiles

4.26µm CO₂ Absorption Peak

4.2-4.35nm band

Combining filter peak shift, incident angle and temperature can have significant impact on output signal, hence noise!

MEMS IR Detector

Design: Single crystal silicon p+ and n+ elements with Tungsten interconnects. SiO₂ membrane of high thermal resistance to enhance the IR heating of the thermopile

1.16mm x 1.06mm chip, Sensing area 0.3mm²

MEMS IR Detector: Key Parameters

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Noise Optimisation

Combining fast MEMS IR Emitter and Detector not only mechanical chopper can be eliminated but also noise performance can be optimised

Construction of Compact NDIR Sensor

With micro-bulb and TO packaged IR Emitters and detectors a compact solution cannot be achieved!

Best option is MEMS solution

NDIR System Electronics

Initial Measurements – Worst case Example

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

CO₂ Sensitivity measurement: Worst Case Example

Effects of Humidity

Thus built-in compensation circuits on CMOS platform will lead to more compact solutions

Examples of Commercial CO2 Breath Analyser(Capnometer)

- Masimo EMMA
- Viamed VM-2500-M
- Philips Respironics TIDAL WAVE
- UtechMedical UT100C

Typical cost > \$1K, so low cost high volume solutions would greatly benefit in saving lives or improve quality of life!

Mid-IR Applications

Depending on the gas concentration level (ppm/ppb) to be measured MEMS IR Emitters and Detectors can be exploited for sensing other interesting gases

MOX Sensor Products

Overview

- Common foot-print SMD
- Serve multiple purposes and wide range of applications

Requirements

- Ease of integration
- Small size
- Ultra low power
- Low cost
- High volume

Solution

- Worlds smallest and lowest power gas sensor
- Supports IAQ / CO monitoring & alcohol breath analysis
- Fast response
- Sensor array for multi-gas sensing and redundancy
- Scope for further miniaturisation

CONCLUSIONS

- MEMS IR Emitters and Detectors are true enabler for low cost and high volume NDIR gas sensors.
- Signal to noise ratio (SNR) can optimised with the benefit for higher switching frequency offered by MEMS IR Emitter and Detector solutions when compared with micro-bulb.
- Using MEMS and SMD or Die-PCB solution, can enable future compact NDIR solutions, not just for AQM, Medical but also IoT.

Current EU Projects activities

- SOIHITS (Harsh Environment)
- MSP (3D TSV Packaging)
- GRAFOL (Advanced Material)
- E2SWITCH (Ultra-low voltage)

Switches and Circuits

Acknowledgements

Founders, Investors and Team at Cambridge CMOS Sensors Limited.

WWW.CCMOSS.COM

