

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*COST Action TD1105

WGs and MC Meeting at Rome, 4-6 December 2012

Action Start date: 01/07/2012 - Action End date: 30/06/2016

Year: 2012-2013 (*Starting Action***)**

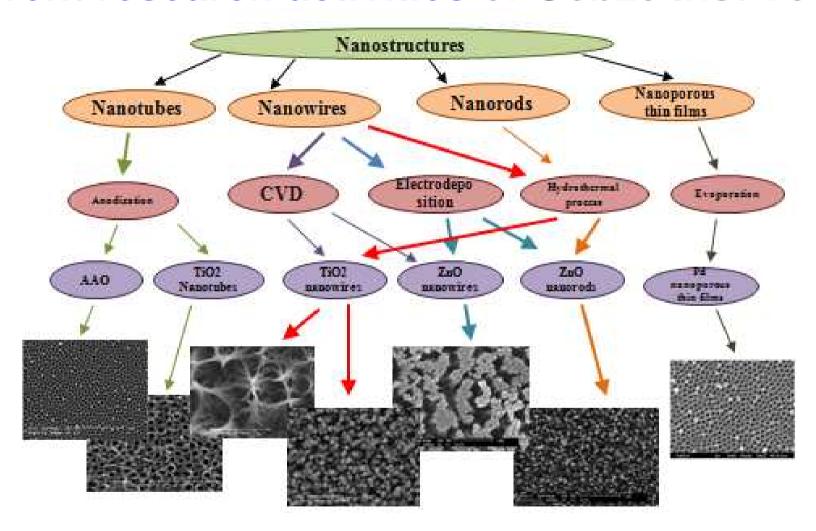
Zafer Ziya ÖZTÜRK

Function in the Action (MC,WG1&2, SIG member,)

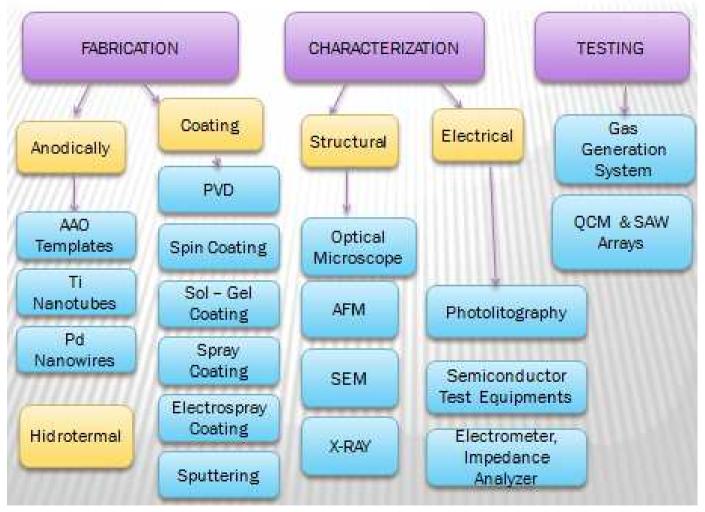
Gebze Institut of Technology, Dept. of Physics,

41400 Kocaeli TURKEY

ESF provides the COST Office through a European Commission contract through a European Commission contract



Scientific context and objectives in the Action


- The risky gases which may affect adversely air quality in the car are H₂, CO, H₂S, NH₃, NO₂, CO₂ etc. According to USA EPA standards the limit values of the concentration for one hour exposure are 35 ppm (part per million) for CO, 100 ppb (part per billion) for NO₂, 0,12 ppm for O₃, 75 ppm for SO₂, 10 ppm for H₂S etc.
- Within the frame of TD1105 EuAirNet, nanostructured doped-undoped metal-oxide semiconductor based gas sensors will be developed to control the air quality in car cabin including fuel cell battery operated vehicles.

Current research activities of Gebze Inst Tech

Research Facilities available for GIT

Suggested Priorities for future research

- gas sensors based on doped/undoped nanostructured metal-oxide semiconductors will be developed for toxic gases such as H₂, CO, and NO₂.
- to fabricate inexpensive, sensitive and selective gas sensors for toxic gases in the car cabin from low level to high level concentrations with low power consumption,
- ZnO and TiO₂ nanostructures will be synthesized by using sol-gel, anodization, hydrothermal, chemical vapor deposition (CVD), and electrochemical methods.
- Fabricated sensor devices will be characterized against to gases
 H₂, CO, NO₂ and interference gases.

