European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 2nd International Workshop *EuNetAir* on New Sensing Technologies for Indoor and Outdoor Air Quality Control ENEA - Brindisi Research Center, Brindisi, Italy, 25 - 26 March 2014 **Participatory Air Quality Sensing Jan Peters Speaker Affiliation Logo** Flemish Institute for Technological Research (VITO), Belgium

12/07/2014 © 2014. VITO NV ESF provides the COST Office

Outline

- » Participatory Air Quality Monitoring
 - » What?
 - » Collective action
 - » Stakeholders collaboratively define:
 - » Evaluation issues
 - » Collect and analyse data
 - » Take action
 - » Large scale deployment
 - » Low-cost sensing technologies
 - » Why
 - » High-resolution characterization of the air quality
 - » Exposue assessment at community level
 - » Preventive health (activity planning)
 - » ...

Outline

- » Participatory Air Quality Sensing
- » Urban air quality
 - » pollutant concentrations
 - » local sources traffic
 - » dynamic environment
 - » spatio-temporal pattern

» 3 nrnierts

BC conc. at PLANTIN EN MORETUSLEI on 2012-02-13

» Research questions:

- » Mapping of the air quality in urban micro-environments
- » Variability of hot-spots
- » Data coverage and data processing
- » Sensors:
 - » Aeroflex VITO (Elen et. al., Sensors 13(1), 221-240)
 - » Micro-aethalometer
 - » P-Trak

- » Research questions: mapping of the air quality in urban micro-environment
- » Sensors: Aeroflex VITO
- » Methods: mobile monitoring
 - » Confined area, limited nr streets
 - » Targetted in space and time

- » Research questions: mapping of the air quality in urban micro-environment
- » Sensors: Aeroflex VITO
- » Methods: mobile monitoring in limited number of streets
- » Participation: no citizen participation
- » Results:
 - » Temporal variability:

- » Research questions: mapping of the air quality in urban micro-environment
- » Sensors: Aeroflex VITO
- » Methods: mobile monitoring in limited number of streets
- » Participation: no citizen participation
- » Results:
 - » Spatial variability:

- » Research questions: mapping of the air quality in urban micro-environment
- » Sensors: Aeroflex VITO
- » Methods: mobile monitoring in limited number of streets
- » Participation: no citizen participation
- » Conclusion:
 - » Feasibility of mapping at high (temporal) and spatial resolution
 - » Effects of traffic dynamics, street morphology, distance to traffic
 - » Suitable for individual exposure monitoring, strong effect of peak concentrations at cross-roads and in tunnels
- » Challenges:
 - » Methodological issues setting up mobile monitoring campaigns
 - » Data coverage in space and time
 - » Data validation

Case 2: City Guards

- » Research question: mapping of black carbon in urban environment by city personnel
- » Sensors: black carbon mapper

Case 2: City Guards

- » Research question: mapping of black carbon in urban environment by city personnel
- » Sensors: black carbon mapper
- » Methods: mobile monitoring (opportunistic targetted)
- » Participation: city authority, interest group
- » Results:

Case 2: City Guards

- » Research question: mapping of black carbon in urban environment by city personnel
- » Sensors: black carbon mapper
- » Methods: mobile monitoring (oportunistic targetted)
- » Participation: city authority, interest group
- » Results
- » Conclusion:
- The Black Carbon Mapper allows to map the BC exposure of pedestrians and bikers in urban environments on the street level at a feasible cost by cooperating with city personnel and volunteers.

- » Research questions: Air quality monitoring by citizens
- » Sensors:
- » Hardware sensor box
 - » Commercially available sensors
 - » 8 gas sensors
 - » Specifications and tests:

	Parameter	Dynamic range	Outdoor
Alphasense CO-BF	СО		0.32 ppm
e2v MiCS-5521	СО	1–1000 ppm	0.32 ppm
e2v MiCS-5525	СО	1 – 1000 ppm	0.32 ppm
Figaro TGS 2201 (dual)	CO NOx	10 – 1000 ppm 0.1 – 10 ppm	0.32 ppm 30 ppb
e2v MiCS-2710	NO2	0.05 – 5 ppm	30 ppb
e2v MiCS-2610	03	10 – 1000 ppb	0 - 70 ppb
Applied Sensors AS-MLV	VOC		

- » Sensors:
- » Hardware
 - » Commercially available sensors
 - » 8 gas sensors
 - » Specifications and tests:
 - » At lower end of the sensor measurement range
 - » Response times: minute(s)

from laboratory tests

- » Sensors:
- » Hardware
 - » Commercially available sensors
 - » 8 gas sensors
 - » Specifications and tests:
 - » At lower end of the sensor measurement range
 - » Response times: minute(s)
 - » Sensitivity from outdoor tests at traffic location: moderate

	Reference monitors				
Sensors	CO	NO	NO_2	O3	BC
Alphasense CO-BF	0.52 (0.16)	0.41 (0.11)	0.34 (0.11)	-0.32 (0.14)	0.35 (0.13)
e2v MiCS-5521 CO	0.31 (0.04)	0.32 (0.04)	0.34 (0.04)	-0.09 (0.11)	0.41 (0.02)
e2v MiCS-5525 CO	0.60 (0.02)	0.51 (0.05)	0.56 (0.05)	-0.71 (0.05)	0.55 (0.06)
Figaro TGS 2201 CO	0.25 (0.02)	0.32 (0.01)	0.17 (0.00)	-0.48 (0.01)	0.38 (0.01)
Figaro TGS 2201 NOx	-0.78 (0.01)	-0.40 (0.06)	-0.24 (0.05)	0.47 (0.05)	-0.47 (0.06)
e2v MiCS-2710 NO2	-0.58 (0.02)	-0.40 (0.06)	-0.31 (0.08)	0.64 (0.07)	-0.49 (0.06)
e2v MiCS-2610 O3	-0.67 (0.06)	-0.56 (0.02)	-0.55 (0.05)	0.83 (0.07)	-0.62 (0.03)
Applied Sensors AS-MLV VOC	0.63 (0.02)	0.43 (0.17)	0.53 (0.15)	-0.44 (0.26)	0.45 (0.19)

- » Sensors:
- » Hardware
 - » Commercially available sensors
 - » 8 gas sensors
 - » Specifications and tests:
 - » At lower end of the sensor measurement range
 - » Response times: minute(s)
 - » Sensitivity at traffic location: moderate
 - **>>**

- » Single sensor response is meaningless (absolute values)
- » Sensor response has to be "translated" into air parameter concentration
- » "translation process" by calibration procedure
 - » Not for single sensors
 - » For sensor array (e-nose) (complex mixture) \rightarrow integrated target

- » Sensor box calibration :
 - » model relationship between output of the sensor array and a pollutant concentration ⇒ black carbon (BC)

- » Stationary and mobile measurements for two weeks with sensor boxes and reference BC instrument
- » ANN model on rescaled data ("city specific")
- » Calibration model:
 - » Good performance on stationary data (cross-validation) $R^2 > 0.8$
 - » Lower performance on mobile data (fully independent validation) R² < 0.4

- » Calibration model:
 - » Good performance on stationary data (cross-validation) R² > 0.8
 - » Lower performance on mobile data (fully independent validation) R² < 0.4

» Build-up of uncertainty: sensors in dynamic urban environment, mobile application, calibration model

- » Methods: mobile measurements with sensor box
 - » Repeated measurements !
- » Participation:
- » Moderate scale (20 sensor boxes per city) duration of 2 weeks
- » Demanding for volunteers:
 - » Sensor requirements: heating-up
 - » Methodological requirements: repeated measurements in dynamic environment
 - » Obtrusive system
 - » Future prospects:
 - » Sensor development: improved sensitivity, shorter response times, futher miniaturisation
 - » Futher automatisation of the system, less obtrusive
 - » 18 million measurements

- » Data interpretation:
 - » Personal data: personal exposure tracking
 - » Aggregated data: aggregation of data over all the participants

Personal exposure	Data aggregation
personal statistics on website	Overview stats and maps on website
one sensor box	several sensor boxes
small data sets	large data sets
<pre>personal interpretation (events?)</pre>	smoothing of events
personal interest	broader community

- » Data interpretation:
- » Critical steps for data interpretation
 - » Data validation
 - » Mapping of data points:
 - » Map to streets based on closest distance
 - » Link street information to air quality measurements

exposure to peak concentration

12/07/2014 © 2014, VITO NV

number of measurements with BC conc. > 20 µg/m³

- » Data interpretation:
- » Critical steps for data interpretation
 - » Data validation
 - » Mapping of data points
 - » Aggregation of data:
 - » Integration in time (and space)
 - » Smoothing with Gaussian kernel
 - » To fixed points (10/20 m distance within streets) OSM

- 20% less than 14 repetitions
- 20% more than 130 repetitions

Number of measurements

Black carbon map of Antwerp

Sensor box

Portable 'reference' instrument

- + : reasonable agreement between streets/squares (relative) agreement substantially higher than with maps of sensor values
- disagreement at urban green
 within street variability lower

Conclusions

- » Participatory monitoring of a highly dynamic urban environment
 - » Our answers to major challenges:
 - » Sensor box calibration
 - » Sensor array (not just one sensor)
 - » Smart combination of sensor responses
 - » One target variable of general interest
 - » Data collection methods
 - » Respect sensor heating-up period
 - » Repeated measurements in space and time
 - » Data validation (data quality control)
 - » Possibilities to map at high resolution from participatory monitoring

References and acknowledgements

- » Elen et. al., 2013. The Aeroflex: A Bicycle for Mobile Air Quality Measurements. Sensors 13(1), 221-240.
- Peters et. al., 2013. Monitoring PM10 and ultrafine particles in urban environments using mobile measurements. Aerosol and Air Quality Research 13(2), 509-522.
- » Van Poppel et. al., 2013. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environmental Pollution 183, 224-238.
- » Peters et. al., 2014. Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium. Atmospheric Environment, to be published.
- » Sirbu et. al., 2014. Bottom-up air quality monitoring the case of AirProbe. In preparation.

