European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105 2nd International workshop EuNetAir on *New Sensing Technologies for Indoor and Outdoor Air Quality Control* ENEA - Brindisi Research Center, Brindisi, Italy, 25 - 26 March 2014 Chemical Sensors for the Detection and Quantification of Indoor Air Pollutants

Thu-Hoa TRAN-THI

WG2 Member / thu-hoa.tran-thi@cea.fr

CEA-Saclay, NIMBE/Francis Perrin Laboratory

URA CEA-CNRS 2453, 91191 Gif-sur-Yvette/FRANCE

Francis Perrin Laboratory Chemical Sensors Team (2014)

Permanent staff

L. Mugherli

T.-H. Tran-Thi

C. Rivron G. Le Chevallier

Post-Doc

PhDs

Engineer

<u>T-H. Nguyen</u> W. Bamogo N. Landreau

2010: ethera

Saclay

R&D

17 employees in 2014

E. Chevallier C. Belon K. Raulin T. Caron

M. Gallois S. Maurin E.Exposito T-D.Nguyen

F. Abedini A. Gimonet R. François X. Mathiaud

Y. Bigay S. Colomb K. Macquet P. Castaing

Indoor air pollutants

- Quantification
- Source detection
- Depollution

Crolles Headquarter Commercial & Marketing Production

Sensors for the Environment

Indoor Air Quality Formaldehyde (schools) Nitrogen trichloride (Swimming pools)

SENSORS which properties are needed?

Sensitivity

> ppb level : Pre-concentration

- Selectivity
 - micro-chromatography
 - ➢ doping, T°
 - > molecular recognition
- Rapidity
- Low cost

Chemical Sensors

Easy-to-do synthesis

Characterisations Monoliths & Films

Porosity

Adsorption/desorption isotherms $\rightarrow S_{ad}$, V_{pore} , distribution of pore size

Film thickness

Profilometry, absorption spectroscopy

Dopant coverage

Thermal Gravimetry Analysis (TGA)

Hydrophilicity or hydrophobicity

Contact angle, near-IR spectroscopy, TGA

METROLOGY

Generation of calibrated gas mixtures

- Solid compounds (paraformaldehyde)
- Liquid compounds
- Unstable compounds formed in situ (chloramines)

Generation of calibrated gas mixtures

Sensors for Environment

Indoor Air Quality

Detection of the ubiquitous formaldehyde

VOC Outdoors and Indoors French national campaign in 2005 (600 dwelling-houses)

Decisions resulting from the campaigns

- **2006 :** List of 50 indoor air pollutants (INDEX list & ANSES)
- 2007-2009 : Guide Values for Indoor Air (ANSES)
- Formaldehyde, Benzene, NO, Naphtalene
- **Nov. 2009 : Values for Risk Management (HCSP)**
- Formaldehyde : $10 \ \mu g/m^3$, $30 \ \mu g/m^3$, $50 \ \mu g/m^3$
- Jan. 2012 : Labelling of materials (Law)
- **Juil. 2012 : IAQ monitoring in public buildings** (Law)

ANSES = Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail HCSP = Haut Conseil de la Santé Publique

Formaldehyde detection

82, 1423-1431, 2007

Detection of DDL abs & fluo

Detection units

Continuous exposure of monolith doped with Fluoral-P to CH₂O (40 ppb)

S. Mariano et al, Procedia Engineering, 5 (2010) 1184-1187 COOPERATION IN SCIENCE AND TECHNOLOGY

PROFIL'AIR of ETHERA

Sampling time: 15 min at 200 mL.min⁻¹ 1 ppb -1 ppm, RH = 50 % 5 ppb: 20 min 1 ppb: 90 min

T.-H. Tran-Thi et al., l'actualité chimique, Valorisation de la recherche, N°366, Sept. 2012.

Detection of CH₂O: comparison

AEROLASER GmbH : 20kg (45*15*56cm), (42 k€) Reactant solution at 4°C: 5 days max Fluorimetry: 0.1 ppb to 3 ppm 90 s (10%-90%) every 5 min

NTT technology, GrayWolfSensing FM801 (1.515 £) Vycor glass doped with acetylacetone 5 cartridges: 530 £ Absorbance @ 420 nm, 20 ppb-1 ppm, 30 min

LFP technology, ETHERA Profil'Air (1.260 €) Sol-Gel material doped with Fluoral-P 5 cartridges: 225 € Absorbance @ 420 nm, 5 ppb-1 ppm, 20 min

Campaign of CH₂O measurements in schools Passive mode

Campaign conditions

- Badges hang on the ceiling (3 Radiello, 1 Ethera)
- Duration: Monday morning-Friday afternoon
- RH & T° recorded every day

Analyses of Radiello cartridges by 3 different laboratories:

Quadlab, Tera-Environment, LHVP

Analysis of ETHERA badge on site

Campaign of CH₂O measurements in schools

School	Room	[CH ₂ O]						Т°С	ETHERA	ARB
		average	Lab1	Lab2	Lab3	ARB				
Paul Bert	103	23,9	24,2	24,4	23,0	3,8%	42,6	22,9	22,2	-7,1%
Paul Bert	104	22,9	24,2	23,0	21,6	5,7%	41,9	22,7	19,8	-13,5%
Paul Bert	105	17,2	17,7	18,3	15,6	9,3%	43,8	22,7	14,6	-15,1%
Paul Bert	005	20,4	22,1	21,9	17,2	15,7%	43,2	21,7	18,3	-10,3%
Paul Bert	006	19,4	19,3	20,7	18,1	6,7%	44,2	21,8	16,9	-12,9%
Ampère	03	9,7	9,7				50,0	15,4	13,0	34%
Ampère	02	15,0	15,0				55,6	15,0	16,0	6,6%
Ampère	01	15,7	15,7				53,0	14,9	16,7	6,4%
Bériat	03	11,7	11,7				51,1	15,5	12,6	7,7%
Bériat	02	14,2	14,2				51,8	16,1	17,0	19,7%
Bériat	01	16,7	16,7				52,2	16,0	19,7	18%
Houille Blanche	05	10,2	13,3	8,4	8,9	30,4%	56,7	12,4	6,5	-36,3%
Houille Blanche	04	8,2	10,1	7,0	7,0	23,1%	55,0	13,1	5,3	-35,4%
Houille Blanche	03	11,0	14,6	8,9	9,6	32,7%	52,6	13,6	6,1	-44,5%
Houille Blanche	02	8,8	9,7	8,1	8,7	10,2%	52,9	12,8	7,0	-21%
Houille Blanche	01	15,4	17,5	14,3	14,5	13,6%	49,2	13,7	12,0	-22%
Savane	01	14,6	17,4	13,4	12,9	19,2%	60,0	11,4	12,1	-17%
Savane	02	17,8	21,6	16,1	15,7	21,3%				
Savane	03	18,0	22,5	15,6	16,0	25%				
Savane	04	8,2	11,2	6,8	6,5	36,6%				
Savane	05	11,5	14,0	10,5	10,0	21,7%				

 $\mathbf{ARB(\%)} \stackrel{\text{EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY}}{= ([CH_2O]_{average} - [CH_2O]_{ETHERA})/[CH_2O]_{average}}$

Sensors for Environment

Air quality in swimming pools

Detection of nitrogen trichloride (NCl₃)

What air do we breathe in swimming pools?

NCl₃ and CHCl₃ in air

Toxicity of NCl₃

- Classified as « irritant »
- Troubles reported for kids and pool attendants
 - Acute exposure: eye irritation & breathing trouble
 - Long time exposure : asthma
- French regulation for exposed workers (INRS, 2001)

-0,3 to 0,5 mg/m³ in air = 60 to 100 ppb

- Typical levels measured in swimming-pools
 - -10 to hundreds of ppb (number of swimmers & ventilation system)

Generation of NCl₃

Reproducing swimming pool atmosphere Chloramines: NH₂Cl, NHCl₂ & NCl₃

NCl₃ detection methods

2 hours of pumping + HPLC or 45 min of pumping + liquid phase colorimetry (TRIKLORAM)

Needs : Easy-to-use method Direct & fast measurements

Principle of NCl₃ detection

Kinetics of formation of I₃/amylose

Slope proportional to NCl₃ concentration

Calibration curve for NCl₃ detection

Flux = 200 ml.L⁻¹, %RH ≈ 60%

T.-H. Nguyen et al, Sensors & Actuators, 187 (2013) 622- 629

Technology transfer to ETHERA

Commercialized by CIFEC since December 2012

Campaign of NCl₃ measurement in swimming pool

Campaign	Duration	LHVP	ETH ppb	ERA Time	Population in H ₂ O	ETHERA average	ARB
March 28	10H-12H	10.1	14.8	10:58	17 children	10.2	4.2%
		19.1	21.9	11:32	17 children	10.5	
	12H-14H		18.0	12:00	0	22.0	3.3%
		21.3	18.9	12:35	0		
			29.1	12:52	12 adults aquagym		
	14H-16H	19.3	26.8	14:10	11 adults aquagym	18.3	5.2%
			13.3	14:36	11 adult aquagym		
			14.7	15:18	14 children		
April 04	10H-12H		20.7	10:55	18 children	18.6	11.4%
		16.7	19.8	11:27	18 children		
			15.3	11:56	12 children		
	12H-14H	22.4	16.5	12:33	0	16.5	26.3%
	14H-16H	22.8	20.0	14:15	10 adults aquagym	19.8	13.2%
			21.8	14:50	10 adults aquagym		
			17.5	15:35	5 children+3babies		
			19.9	15:37	2 nd measurement		

 $ARB (\%) = ([NCI_3]_{LHVP} - [NCI_3]_{ETHERA})/([NCI_3]_{LHVP})$

Campaign	Duration	LHVP	ETHERA ppb Time		Population in H ₂ O	ETHERA average	ARB
May 02	10H-12H		4.9	10:28	0	11.4	208%
		<u>3.7</u>	10.6	10:58	0-17 children		
			11.9	11:24	17 children		
			18.2	11:45	17 children		
	12H-14H		20.8	12:15	17 children	22.9	57.9%
		14.5	21.4	12:48	0		
			26.3	14:36	11 adults aquagym		
	14H-16H		15.2	14:21	7 adults aquagym	14.9	8.6%
		16.3	17.2	14:23	2 nd measurement		
			12.9	15:08	11 children		
			12.7	15:10	2 nd measurement		
			16.6	15:32	10 children+4babies		

CONCLUSIONS

- Sol-Gel nanoporous materials well-suited for:
 - Selective and sensitive sensors (nanoreactors with specific probes)
 - Analyte preconcentration (sponge, high S_{ad})
 - Analyte filter (tailored pores)
- Many domains of application
 - Environment : chemical sensors for air quality

specific filters for depollution

- Health: Microbiology, food industry (discrimination of bacteria)
 Non-invasive diagnosis of diseases
- Other potential uses
 - Filtering membranes for other sensors (pore size monitoring)
 - Up-stream specific filters trapping of undesired pollutants)

Acknowlegments

Laboratoire d'Hygiène de la Ville de Paris

DE LA RECHERCHE À L'INDUSTRIE

20