European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

2nd International Workshop *EuNetAir* on

New Sensing Technologies for Indoor and Outdoor Air Quality Control

Palazzo Nervegna-Granafei, Brindisi Municipality Headquarters ENEA - Brindisi Research Center, Brindisi, Italy, 25 - 26 March 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016 - Year 2: 1 July 2013 - 30 June 2014

Development of a Portable Sensor-System for Air Quality Monitoring

Domenico SURIANO, Michele PENZA ENEA - Brindisi, Italy

OUTLINE

- STATE-OF-ART ON AQ SENSING TECHNOLOGIES:
 - Data Quality Objectives (DQO) of AQ DIRECTIVE (2008/50/EC) on Ambient Air Quality and Cleaner Air for Europe (CAFE)
- VALIDATED AQ MONITORING by ENEA NASUS SENSORS:
 - CO Monitoring in collaboration with ARPA-Puglia, Brindisi, IT
 - NO₂, PM₁₀ Monitoring in collaboration with JRC-IES, Ispra, IT
- **CURRENT CHALLENGES:**
 - AQ Sensors Applications in City of Bari: IT PON RES-NOVAE
 - IAQ Sensors Applications in Schools: IT PON BAITAH
 - AQ Sensors Applications on Buses (L'Aquila): IT Smart Ring
- **CONCLUDING REMARKS:**
 - IAQ and AQ Sensors Applications in European Cities (!?) 2 COOPERATION IN SCIENCE AND TECHNOLOGY

Michel Gerboles, JRC-Ispra, IES

Fixed measurements: definition

'fixed measurements' means measurements taken at fixed sites to determine the levels in accordance with the relevant *Data Quality Objectives* (DQO);

Fixed measurements are mandatory in zones and agglomerations where the upper assessment thresholds are exceeded.

AQD: European DIRECTIVE 2008/50/EC on ambient air quality and cleaner air for Europe, art. 2

Michel Gerboles, JRC-Ispra, IES

AQD: Data Quality Objectives (DQO)

	SO ₂ , NO ₂ /NOx , CO	Benzene	O ₃
Uncertainty for fixed measurements	15 %	25 %	15 %
	Fluoresc., chemil., NDIR	automatic GC or pumped sampling	UV photometry
	demonstration of equivalence would be mandatory to use micro-sensors		

Indicative methods: definition

'indicative measurements' means measurements which meet data quality objectives that are less strict than those required for fixed measurements;

AQD: European Directive 2008/50/EC on ambient air quality and cleaner air for Europe, art. 2

Michel Gerboles, JRC-Ispra, IES

AQD: Data Quality Objectives (DQO)

	SO ₂ , NO ₂ /NO /NOx, CO	Benzene	O ₃
Uncertainty for fixed measurements	15 %	25 %	15 %
Uncertainty for indicative measurements	25 %	30 %	30 %
	diffusive samplers, <i>micro-sensors</i>		

Michel Gerboles, JRC-Ispra, IES

Roadmap for Next Generation Air Monitoring *U.S. Environmental Protection Agency*

Data Quality Requirements for the range of NGAM applications

US EPA, March 2013:

Tim Watkins, US EPA Watkins.Tim@epa.gov

Viens Matthew, US EPA Viens.Matthew@epa.gov

http://epa.gov/research/airscien ce/docs/roadmap-20130308.pdf

PORTABLE AQ SENSOR-SYSTEM: ENEA NASUS

TECHNICAL DATASHEET

• AQ SENSORS: CO, NO₂, SO₂, H₂S, PM₁₀, RH, T

NASUS 4: an hand-held sensing device building attempt (1/2)

PER LE NUOVE TECNOLOGIE, L'ENEI

NASUS 4: an and-held sensing device building attempt (2/2)

- hand-held device
- average power consumption: 0.15W
- average battery autonomy: 46hrs
- fully remote operated by GPRS-GSM networks
- real time monitoring
- 4 electrochemical gas sensors onboard + Temperature + RH (sensors)
- solar-cells automatic power switching (smart power management)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

10

VALIDATED AQ MONITORING by ENEA NASUS SENSORS:

- CO Monitoring in collaboration with ARPA-Puglia, Brindisi, IT
- NO₂, PM₁₀ Monitoring in collaboration with JRC-IES, Ispra, IT

NASUS 4: VALIDATION in Collaboration with ARPA-Puglia (1/4)

VALIDATION OF NASUS 4 IN AN OFFICIAL LOCAL-NODE OF THE NETWORK ARPA-PUGLIA, Regional Agency for Environmental Protection

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

NASUS 4: VALIDATION in Collaboration with ARPA-Puglia (2/4)

Validation Time-Domain Measurements Method: NASUS 4 Sensors *versus* Standard Chemical Analyzers

VS

Standard Chemical Analyzers

NASUS 4 Sensors by ENEA Brindisi

NASUS 4: CO Validation in Collaboration with ARPA-Puglia (3/4)

 $E(t) = |C_N(t) - C_A(t)|$ Mean E(t) = 28.6 ppb Max E(t) = 339.5 ppb

Very Good Accuracy !

CO EC Sensor COCX by Alphasense Ltd, UK

Measurement Timing: 6 - 9 January 2014

CO (ppm)

E(t) = Error

NASUS 4: CO Validation in Collaboration with ARPA-Puglia (4/4)

 $E(t) = |C_N(t) - C_A(t)|$ Mean E(t) = 29.05 ppb Max E(t) = 427.6 ppb

> Very Good Accuracy !

CO EC Sensor COCX by Alphasense Ltd, UK

Measurement Timing: 10 - 13 December 2013

Date/time

CO (ppm)

NASUS 4: Validation in Collaboration with JRC-IES, Ispra (1/6)

VALIDATION OF NASUS 4 IN A REAL SCENARIO BY MEANS OF JRC AQ MOBILE LAB

NASUS 4 on JRC AQ Mobile Laboratory

NASUS 4: Validation in Collaboration with JRC-IES, Ispra (2/6)

Validation Time-Domain Measurements Method: NASUS 4 Sensors *versus* Standard Chemical Analyzers

Standard Chemical Analyzers

NASUS 4 Sensors by ENEA Brindisi

NASUS 4: NO₂ Validation in Collaboration with JRC-IES, Ispra (3/6)

 $E(t) = |C_N(t) - C_A(t)|$ Mean E(t) = 5 ppbMax E(t) = 12.7 ppb Very Good **Accuracy** ! NO_2/O_3 ppb **NO₂ Thresholds: 200 μg/m³ (100 ppb)** 400 μg/m³ (200 ppb) NO₂ EC Sensor NO2A1

by Alphasense Ltd, UK

Measurement Timing: 28 - 30 January 2014

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

NASUS 4: NO₂ Validation in Collaboration with JRC-IES, Ispra (4/6)

 $E(t) = |C_N(t) - C_A(t)|$ Mean E(t) = 3.36 ppb Max E(t) = 14.83 ppb

Very Good Accuracy !

NO₂ Thresholds: 200 μg/m³ (100 ppb) 400 μg/m³ (200 ppb)

NO₂ EC Sensor NO2B4 by Alphasense Ltd, UK

Measurement Timing: 30 - 31 January 2014

E(t) = Error $C_{N}(t): Nasus 4 NO_{2} sensor concentration$ $C_{A}(t): NO_{2} reference analyzer concentration$

NASUS 4: PM Validation in Collaboration with JRC-IES, Ispra (5/6)

PPD20V Particle Sensor by Shinyei Ltd, Japan

Detectable Particle Size: 1 - 5 μ m

$\mathbf{C(t)} = \mathbf{A}_0 + \mathbf{S} \times \mathbf{V(t)}$

C(t) = PM Concentration [μg/m³] A₀ = Bias Constant (3.2795 μg/m³) S = Sensor Sensitivity (46.85 (μg/m³)/V) V(t) = Sensor Output Voltage [V]

NASUS 4: PM Validation in Collaboration with JRC-IES, Ispra (6/6)

 $E(t) = |C_N(t)-C_A(t)|$ Mean $E(t) = 8.98 \mu g/m^3$ Max $E(t) = 41.76 \mu g/m^3$ E(t) = Error $C_N(t)$: NASUS 4 PM sensor concentration $C_A(t)$: PM10 reference analyzer concentration

VIDEOCLIP NASUS: CARS AIR-EXHAUST

IT NATIONAL PROJECT RES-NOVAE: INDOOR APPLICATIONS

Smart City Bari

School **Municipality** Carducci Residential Offices **Buildings** (IACP)

ENEA AQ Sensor Node

Real-Word Scenario for Sensor Technology Demonstration: Schools, Public Offices, Buildings

IT NATIONAL PROJECT RES-NOVAE: OUTDOOR APPLICATIONS

Real-Word Scenario for Sensor Technology Demonstration: AQ ENEA Sensors Fixed Nodes Network distributed in Bari (Italy) Urban Control Center (UCC) collects ENV/ENE/OTH data from City.

IT NATIONAL PROJECT RES-NOVAE: OUTDOOR APPLICATIONS

Real-Word Scenario for Sensor Technology Demonstration: AQ ENEA Sensors Mobile Node mounted on public bus (AMTAB) in Bari (Italy). Urban Control Center (UCC) collects ENV/ENE/OTH data from City.

CONCLUSIONS and Future Activities

- Low-cost Micro-sensors should not substitute but supplement routine monitoring devices, at the moment.
- Use of portable systems based on *low-cost solid-state gas* sensors to supplement high-cost standard chemical analyzers should be possible for some pollutant gases.
- Further long-term investigations in order to extend the range of air-pollutants detectable by *low-cost solid-state gas sensors* at higher accuracy.
- Further sensor-system miniaturization and integration with commercial electronics (e.g., smartphones, tablets, etc.) for community participatory environmental sensing.
- Air Quality Control Fixed/Mobile Sensors Network for Smart Cities Applications.

ACKNOWLEDGEMENTS: Partners

JOINT RESEARCH CENTRE

Institute for Environment and Sustainability (IES)

JRC-Ispra - INSTITUTE for ENVIRONMENT AND SUSTAINABILITY (IES): M. GERBOLES, L. SPINELLE, JRC-IES, Ispra (Varese), Italy TECHNICAL COLLABORATION AGREEMENT <u>ENEA & JRC-IES</u> ON AQ SENSORS PERFORMANCE ASSESSMENT (EMRP Project MACPOLL)

ARPA-PUGLIA:

G. ASSENNATO, A. NOCIONI, ARPA-Puglia, Bari-Brindisi, Italy TECHNICAL COLLABORATION AGREEMENT <u>ENEA & ARPA-PUGLIA</u> ON AQ SENSORS VALIDATION

ENEA: G. CASSANO, V. PFISTER, G. CAMPOREALE, M. PRATO, S. DIPINTO, F. DEPASCALIS, ENEA - Brindisi, Italy

Mariagabriella VILLANI, ENEA - Ispra, Italy

ACKNOWLEDGEMENTS: Projects

CONSORTIUM COST Action TD1105 EuNetAir

European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability

• PON1 BAITAH:

Methodology and Instruments of Building Automation and Information Technology for pervasive models of treatment and Aids for domestic Healthcare

• <u>PON4a RES-NOVAE</u>:

Networks, Buildings, Streets - New Challenging Targets for Environment and Energy

Reti Edifici Strade Nuovi Obiettivi Virtuosi per l'Ambiente e l'Energia

European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability - EuNetAir

.

