European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105 2nd International Workshop *EuNetAir* on *New Sensing Technologies for Indoor and Outdoor Air Quality Control* ENEA - Brindisi Research Center, Brindisi, Italy, 25 - 26 March 2014 <u>SENSING DEVICES BASED ON METALLOPHTHALOCYANINES AND</u> <u>METALLOPHTHALOCYANINE/NANOCARBONS HYBRID MATERIALS:</u> <u>APPLICATION TO AROMATIC HYDROCARBONS DETECTION</u>

Jérôme BRUNET

French MC Member, involved in WG2, SIG 1 & 3, STSM brunet@univ-bpclermont.fr

Institut Pascal

University Blaise Pascal / FRANCE

Scientific context and objectives Motivations ? Hazardous effects of VOCs on health and environment

⇔ direct impacts
⇒ precursors of secondary pollutants

French context ?

Necessity to decrease VOCs emissions Special focus on Benzene and PAH

Action 7: toward a better identification of indoor pollution sources Action 9: better management of AQ in public areas

Action 12: to strengthen the measurement of occupational exposures

Our action ?

Coordinator of the French National project CAPBTX (2010-2013)

Scientific context and objectives

Target pollutants ?

Aromatic hydrocarbons

Guidelines for BTX

		Occupational		
			World Health Organization	OSHA
Benzene	3-6 ppb	9-10 ppb	≈ 1.55 ppb	10 ppm
Toluene	0.08-1.3 ppm	1.3 ppm	≈ 265 ppb	200 ppm
Xylenes	0.05-2 ppm	26.5 ppb	≈ 1 ppm	100 ppm
	MRL TWA-8h	RfC	Odor threshold -1/2h	PEL TWA-8h

Objectives of CAP-BTX project ?

Development of sensor-system based on hybrid materials devoted to the measurement of BTX 3 EAN COOPERATION IN SCIENCE AND TECHNOLOGY

Scientific strategies for BTX detection (1)

To take advantage of interactions between aromatic groups π -stacking \Rightarrow reversible gas adsorption

Sensitivity, reversibility & low response time

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Scientific strategies for BTX detection (2)

Sensor development and calibration

• Metallophthalocyanines (MPc)

Thermal evaporation

O Hybrid materials (MPc/CNTs)

Response of ttb-CuPc QCM sensor (1)

[C₇H₈] = 500 ppm

Flow = 0.75 l/min

T° = RT

Thickness_{ttb-CuPc} = 400 nm

Response of ttb-CuPc QCM sensor (2)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Selectivity of ttb-CuPc QCM sensor ?

No significant response toward CO, H₂S and NO₂!

Response of ttb-ZnPc QCM sensor

No influence of the central metal atom of MPc on gas sensitivity

Enhanced adsorption due to tert-butyl groups

 $\Rightarrow \pi$ -stacking interactions strengthened by tert-butyl groups

Formalization of gas/material interactions still in progress....

Characterization of hybrid materials

Response of ttb-CuPc/SWCNTs QCM sensors (1)

0

180

Time (min)

420

2 Response of ttb-CuPc/SWCNTs QCM sensors (2)

Influence of functional groups

Response in Hz/ng of deposited material	60 ppm	150 ppm	430 ppm	1200 ppm
SWCNTs	Noisy	Noisy	Noisy	Noisy
SWCNTs/OEPH ₂	1.3×10 ⁻³	1.6×10 ⁻³	3.0×10 ⁻³	4.0x10 ⁻³
SWCNTs/TTPH ₂	1.3×10 ⁻³	1.4×10 ⁻³	2.5×10 ⁻³	3.7×10 ⁻³
SWCNTs/ttb-CuPc	1.5×10 ⁻³	2.1×10 ⁻³	3.5×10⁻³	4.5×10 ⁻³

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

ttb-CuPc/SWCNTs vs ttb-CuPc QCM sensors

SAW-based sensors: first results...

Conclusions

- Benzene moieties on MPc ⇒ π-stacking interactions
 ⇒ sensitivity to aromatic hydrocarbons
 ⇒ non-covalent functionalization of CNTs
- Peripheral tert-butyl group ⇒ > solubility into solvent
 ⇒ key-point for BTX detection
- ttb-MPc/SWCNTs hybrid materials ⇒ sensitivity improvement

Open problems and ongoing activities

Investigations on involved gas/materials interactions Enhancement of performances (threshold, resolution) Discrimination between aromatic hydrocarbons

Acknowledgments...

My co-workers...

European Union FEDER funds

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability - EuNetAir

for Air-Pollution Control and Environmental Sustainab

European Network on New S

Financial support of CAP-BTX project

Short Term Scientific Mission

And you for your attention...

