European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105 2nd International Workshop *EuNetAir* on *New Sensing Technologies for Indoor and Outdoor Air Quality Control* ENEA - Brindisi Research Center, Brindisi, Italy, 25 - 26 March 2014

DETECTION OF LOW CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS WITH SiC-FETs

Donatella Puglisi

Participant / donpu@ifm.liu.se

Linköping University / Sweden

Division of Applied Sensor Science and Research collaborations

SGS UNT.	Applied Sensor Science	
A DOPUT		Head: Prof. Anita Lloyd Spetz, Action Vice-Chair, Director of FunMat
LINTON		Senior Researchers: Dr. Mike Andersson, Dr. Robert Bjorklund
Linköping University		Post-Docs: Dr. Jens Eriksson, Dr. Donatella Puglisi
		PhD Students: Zhafira Darmastuti, Hossein Fashandi, Christian Bur (joint PhD with USAAR)
		Tech. Engineer: Peter Möller (also part-time PhD student)
	LEHRSTUHL FÜR	Head: Prof. Andreas Schuetze, Action WG2 Leader, SENSIndoor Project Leader
SAARLANDES	MESSTECHNIK	Post-Doc: Dr. Tilman Sauerwald
		PhD students: Christian Bur, Martin Leidinger, Nicolai Helwig, Marco Schueler
		Diploma worker: Manuel Bastuck
660		
Sensors for	cleaner air	Ulf Thole, CEO
	ost	Mike Andersson (25%)
EURC	DPEAN COOPERATION IN SCI	ENCE AND TECHNOLOGY 2

Outline

Motivation

- Why SiC-FET for indoor AQC
- Issues: evaluation/optimization of sensors' performance and characteristics
 - Sensitivity
 - Stability
 - Detection limit
 - Response/recovery time
 - Temperature dependence
 - Effect of relative humidity
- Main achievements and open problems

Motivation

Air Quality

Adequate **control** of emissions **for** more efficient **reduction** of hazardous air pollutants

Development of **highly-sensitive low cost** gas sensors able to detect **ppb** concentrations of specific VOCs for **indoor** AQC.

Why SiC-FET sensors?

- Wide band gap
- Chemical inertness of SiC

HIGH-TEMPERATURE OPERATION

ADVANTAGES

Possibility to operate the sensor over a wide temperature range with high, stable, reproducible performance

Flexibility when using temperature cycling mode and also possibility to use high temperature for regeneration of the sensor surface

Manufacturing based on proven semiconductor processes allowing costefficient mass production

Large experience on FET technology and high performance commercial transistor devices available

SiC-FET gas sensors fabrication

The SiC-FETs are supplied by SenSiC AB, SME company, and EuNetAir partner. Different sensing layers and operation temperatures enables detection of H₂, NH₃, CO, NO_x, HC like VOCs, H₂S, SO₂

- 30 nm Ir total thickness
- 300 µm gate width
- 10 µm gate length
- 5 μm separation between gate and source/drain

4" wafer ~ 1800 chips

FE Sensor platform

Gate composed by a porous catalytic metal (Ir, Pt) as sensing layer

Sensitivity by

- Number of three phase
 boundaries gas-metal-oxide
- Adsorption sites on the insulator

Selectivity by

- Choice of temperature
- Different catalytic materials
- Structure of the metal

Gas adsorption/reaction at the gate contact => I-V shift

Experimental

Gas mixing system at Saarland University, Laboratory for Measurement Technology, Germany

permeation

oven 1

permeation

oven 2

permeation ovens

MFC

MFC

gas dilution

MFC

20 ml/min

MFC 500 ml/min

MFC

humidification

synthetic air

synthetic air

formaldehyde

synthetic air

synthetic air

FORMALDEHYDE @ 330°C DRY AIR

Conc. (ppb)	Response (mV)	Response time (min)	Recovery time (min)
100 ppb	29	9.4	22.8
1 ppb	13	3.8	2.4
500 ppt	10	4.5	13.2
200 ppt	7	2.4	1.2

COST Action TD1105 EuNetAir Newsletter, Iss. 3/Dec. 2013.

NAPHTHALENE @ 330°C

Conc. (ppb)	Response (mV)		Response time (min)		Recovery time (min)	
	DRY AIR	10% R.H.	DRY AIR	10% R.H.	DRY AIR	10% R.H.
90 ppb	274	46	2.4	0.8	6.0	6.6
10 ppb	140	26	10.2	6.6	4.8	3.6

BENZENE @ 330°C

Conc. (ppb)	Response (mV)		Response time (min)		Recovery time (min)	
	DRY AIR	10% R.H.	DRY AIR	10% R.H.	DRY AIR	10% R.H.
7	21	9	5.6	2.4	10.8	4.8
5	18	9	3.9	n.a.	11.8	16.0
3	12	9	8.3	7.9	n.a.	9.5

Temperature dependence and effect of relative humidity

D. Puglisi, J. Eriksson, C. Bur, A. Schuetze, A. Lloyd Spetz, M. Andersson, Mat.Sci. Forum 778-780 (2014) 1067-1070. RATION IN SCIENCE AND TECHNOLOGY

CONCLUSIONS

Financial support / Partnership

Basis results obtained during a two-week **STSM** at Saarland University (20 May - 4 June 2013)

Grant agreement no. 604311-2, start January 2014

Travel grant from KAW Foundation, IMCS in Buenos Aires (16-19 March 2014)

Contributions to EuNetAir events available at: http://sensindoor.eu/publications/

