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Scientific context and objectives in the Action 

Computational Intelligence in Modern Air Quality 

• Research Goal -> To Address:   

    1.Specificity,  Stability,  Calibration, Energy Management, Deployment  Issues 

 with Computational intelligence (Statistical Regression Learning, Evolutionary 

 Computing, Pattern recognition) 

     2.Develop Integrated Sensors/Model as a service architectures capable to cope 

 with distributed social sensing needs 

• Within WG2 objectives:  

 Develop integrated intelligence for networked AQC gas sensors 
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A Common framework: 

Ideally, We aim to build: 
 

Compact-Intelligent-Cooperating-Easy-to-Deploy 
Air quality chemical sensing platforms  

 
capable to act as a network to assess air quality in complex environments 

Sense… Calibrate… Cooperate… Semantic Value 
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A COMMON FRAMEWORK - > COMMON CHALLENGES 

In this common framework, a small number of important issues seems to 
recurrently arise: 

 
• We need Low Cost sensors, Low cost platforms in order to deal with pervasive deployment 

(stability-sensitivity-specificity trade offs) 
 

• Effective Module Calibration (to cope with non linearity and unspecificities) 
 

• Drift counteraction techniques (to cope with non instability) 
 

• Calibration Transfer   (to deal with sensors diversity, and numerosity) 
 

• Energy Efficiency   (Operation on Batteries) 
 

• Sensor Fusion, Data Mining, Model integration -> (to reach high valued situational awareness) 

Our Approach is to explore the possibility of computational intelligence 
techniques to reduce the impact of these issues. 



Computation Intelligence 

CI: nature-inspired computational methodologies and approaches to address 

complex real-world problems to which traditional approaches, i.e., first 

principles modeling or explicit statistical modeling, are ineffective or infeasible. 

 

- Artificial Neural Networks (SVMs, FFNNs,RBFNs, etc.) 

 

- Evolutionary computing (Genetic Algorithms, Artificial Immune Systems, 

Swarm,etc.) 

- Fuzzy and multivalues Logics 

 

So, What can be done for Air Quality monitoring with CI? 
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It turns out that there are a number of problems 

with wich CI techniques can be of help: 

 

- Multivariate non linear calibration 

- Adaptive drift correction 

- Optimal node localization 

- Node energy efficency (tasking, censoring) 

- Data mining (understanding data variance) 

6 

Computation Intelligence 
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Computation Intelligence 



Multivariate non-linear calibration 

ConcGasA=g(Rsens1,….Rsens2,…, Rsensk, T, RH) 

 

Usually f and g are non linear and change over time (drift) 

CI offer several solution for supervised tuning of universal 

non linear function approximators (e.g. ANNs or SVMs) 
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Sometimes we could have access to: 

Rsens= f(ConcGasA, ConcGasB, … ConcGasN) 

But what we really need is: 

Usually we know  Rsens= f(ConcTargetGas) + interferents list 



DRIFT Counteraction  (& Training Dataset reduction) 

• Sensors  Dri ft  i s  a  well  kno wn problem for  sol id  state 
based  d evices…  

• Concept  d r i ft ,  often neglected,  i s  the sensor  response 
var iat ion  due to  target var iables  pd f  and  environmental  
sett ings var iat ion  (RH,  Humid ity,  changes  in absolute 
and  re lat ive  concentrat ion of  chemica ls  and the ir  
interferents ,  etc . )  

Drift is often tackled with recalibrations  or sensor response correction  approaches 
with very interesting results.  

Both these approaches require a valuable resource: Time (=Samples)! 

 

• Time to calibrate the drift correction approach 

• Time to recalibrate (when on field you need a GT generator!) 

 

The Idea: Exploit Semisupervised learning approaches  for sensors and 
concept drift effects reduction 
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In case of fixed deployments, where do I have to place my nodes? 

How many nodes do i really need? 

I need them to always be switched on and/or sending data? 

 

Basically we need to find an optimal solution for a multiobjective 

function that should  

  1. maximize our spatial accuracy  

  2. minimize the cost of the solution (deployment, mainteinance) 

  3. maximize the battery lifetime of nodes    

 

Evolutionary computing can offer reliable solutions with:  

GAs, Swarm optimization, ANT optimization and the like. 
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Optimal node placement and tasking 
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Despite cross interference? 



SINGLE MODULE CALIBRATION: 
How to train your platform to operate on Field 

Building a CI model (ANN) to cope with non-specificity 
 

 
We don’t try to simulate what it will happen in the real world, we actually exploit what happen. 
 
 - By using gt data and sensor array response to train a batch of  ANN models (one each pollutant) 
 
 
 
 
 
 
 
 
+ No need to synthetically generate a number of different gas mixture to obtain a valid calibration 
+ In case the model can be trained also with in lab data (or can integrate the data) 
+ Computationally effective 
 
- The chosen calibration site should be representative of significant variation of pollution levels 
- How long should we train? The span of time for training dataset should be both limited and 
representative 

S. De Vito et al.; Sensors & Actuators,B Vol. 143, 1, Dec. 2009  
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SINGLE MODULE CALIBRATION: 
How to train your platform to operate on Field 

Building a CI model (ANN) to cope with non-specificity 
 

Outcome: 
• ANN also learns to exploit correlations among multiple sensors [Strength but also weakness] 
• Good results, very low relative error on the concentration estimation of Benzene and CO 
• Acceptable results for the concentration estimation of NOx ,NO2 performance needs definitely to be 

improved 

 

Big Issues: 
• # of needed training samples (ten days) was too big to calibrate tenth or hundreds of multisensor 

devices  
• Sensors and Concept Drift problems become significant  after 4-6 Months 

 
The use of on-line learning (i.e. periodic recalibration)  can obtain significant reduction of drift effects 

 S. De Vito et al.; Sensors & Actuators,B Vol. 143, 1, Dec. 2009  



On Line Learning (Continuous periodic recalibration) 
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1.Based on a model: 

2. Based on mobile analyzers 



DRIFT Counteraction  (& Training Dataset reduction ) 

Semi supervised learning, based on manifold and cluster hypothesis, aims to exploit 
both  

- supervised training samples (for  achieving a l imited but well  fond knowledge of the problem) 

- Unsupervised training sam ples to adapt  and complete the (l imited) knowledge the system 

has gained before 

 

 

Our group applied this technique (Co-training) to the drift effect reduction in the 
previous setting obtaining encouraging results by using a very limited number of 
supervised calibration points (24Hrs). 

 

 

 

 
S. De Vito et al.; IEEE Sensors 2012 
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DRIFT Counteraction  for indoor air pollutant classification 

 

 

Biocircuits Institute at the University of California San Diego Dataset 

-4 MOX sensors Array: Figaro Inc.: TGS2600, TGS2602, TGS2610, TGS2620 

-Discrimination of acetaldehyde, acetone, ammonia, ethanol, and ethylene  

- 5 classes classification problem in controlled in lab conditions at constant T, RH  

-509 measurements collected over a period of 18 months (HEAVY DRIFT EFFECTS) 

 

AINET2 a new AIS (instance based classifiers)  for adaptive drift correction 

Experimental dataset Classification rates (%) 

PLS-DA 73.73 

k-NN 81.34 

Supervised AINET 81.8 

A
2
INET (D = 0) 84.19 (σ = 0.92) 

A
2
INET best 95.30 (σ = 0.38) with D = 0.7 

AINET2 follow the variation of class centroids  

by semisupervised learning obtaining significant 

reduction of drift induced performance hits   
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Classificator 

Regressor 

Ethanol 

Regressor 

Acetic Acid 

Regressor 

Mixture 

On Board intelligence 

Base Station 

e-nose 

Data Sink 

On Board Intelligence for Sensor Censoring  

The problem: Recognize uninformative data acquisitions (low concentrations of relevant 

pollutant or dangerous gas) in presence of interferents in a continuous monitoring 

scenario 
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Experimental Setting: 

 
•Two mock Pollutants (Acetic Acid, Ethanol) 

•In lab calibration of TinyNose equipped with 

•On-Board ANN  sw component (NesC). 

•Threshold level for Ethanol = 100ppm (/2000ppm) 

•p=0.01 probability of positive event  

 

 

S. De Vito et al. IEEE Sensors Journal, Apr. 2011 

Results: 

 
•Computational footprint tradeoff (2.5mAx25ms) 

•1% False Positive rate 

•Extension of lifetime from 47days (1Hz sample f) to 113 days 
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3D Reconstruction occurs at Datasink  

Each w-nose was calibrated 
(in lab) towards the target 
analytes (in mixture). An 
ANN component was 
embedded. 

W-noses  were deployed  in a glass box 
simulating a 3D ambient. A VOC  mixture 
is let evaporate within the box. 

 

Sensors cross calibrate their Kernel 
parameters (simulated @ datasink) 

 

Hi
gh 

L
o
w 

Istantaneous 3D Ethanol (right) and Acetic Acid (left) concentration images (computed 
@datasink) using a 4 w-nose deployment in the glass box experimental setup.  

Test e-nose 

readings  

Kernel 3D-DM 

values 
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Available Facilities 

• 3 Climatic Chambers for sensors arrays (2) and sensors 
nodes (1) characterizations 

• Embedded Programming Lab 

• Supercomputing (GRID-like) facility 

• GIS Models Lab 
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Suggested R&I Needs for future research 

Research directions as R&I NEEDS: 

Invest further research energies in: 

• Adaptive (cooperative) Drift Counteraction  

• Results are not completely satisfactory (still too much time to ignite)  

• Calibration Transfer (Cope with sensor diversity) 

• You cannot repeat the calibration procedure for each node (Costs) 

 

In order to increase reliability of performance estimation and 

acceptability of the techniques: 

 

 MORE MEASUREMENT DATA!!! 

SHARING DATASETS is a KEY NEED 

           



Thank you  

for Your kind attention! 
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Saverio De Vito, Ph.D. 

saverio.devito@enea.it 

ENEA / Italy 

MoniCA 
Monitoring  

AirQuality Cooperatively 



Fig. 3. Acetic acid concentration estimation (red) performed by the FFNN 

component plotted against true concentration (blue). X axis depict time 

(samples) while y-axis depicts real and estimated concentrations values. 

Studio di sistemi Embedded Pattern Recognition per  IWCS / Sensor Censoring 

Fig. 4. Ethanol concentration estimation (red) performed by the FFNN 

component plotted against true concentration (blue). X axis depict 

time (samples) while y-axis depicts real and estimated concentrations 

values. 
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X ~ B (1, p)  

Modellando come una variabile bernoulliana il risultato della 

computazione…. 

Si ottiene l’ assorbimento medio….  

Con una p=0.01 (alta) si passa da 41 giorni a 113 gironi di expected 

life per il singolo nodo in conf. Stella.  



AIS: Principi… 

 

 Training: Evolvere un set (compatto) di istanze (codebook) in 

grado di fungere da istanze rappresentative 

 

 Classificare i campioni “unseen” utilizzando il codebook con 

un algoritmo KNN 

 

 Key Factors: How to evolve the codebook? 

 Mutation (Creare generazioni di istanze mutate) 

 Negative selection (Selezionare x diversità) 

 Clonal Expansion (Clonare le istanze “fit”) 

 

 



AIS: How they works 

• Instance Based Machines 

• Antigens and Antibodies are points in the 

dataset feature space 

• Shape space translate in Euclidean 

Space (though other distance measure 

have been tested) 

• Antigens-Antibody Affinity modeled with 

distance. 



Clone, Mutate, Select 

1. Present  each Antigen 
(training instances) to a 
preliminary antibodies 
codebook (memory cell set) 

2. Select candidates antibodies 
by affinity (Maximize antigen 
affinity: low distance) 

3. Clone and mutate 
candidates 

4. Select best candidate  

5. Prune memory cell set by 
looking at difference with 
antibodies in the memory 
cell set (Minimize self 
affinity: negative  selection) 



Architectural Comparison with BPNN 

• Classification Mechanism: 

– Hyperplanes vs Nearest Neighbour 

• Structure: 

– Neurons (Weights) vs Memory Cells 

• Internal  Knowledge Representation 

– Weight vs Instances 

– Possible use in EDA of AISs 

 


