European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

2nd International Workshop EuNetAir on New Sensing Technologies for Indoor and Outdoor Air Quality Control Palazzo Nervegna-Granafei, Brindisi Municipality Headquarters ENEA - Brindisi Research Center, Brindisi, Italy, 25 - 26 March 2014

Action Start date: 01/07/2012 - Action End date: 30/06/2016 - Year 2: 1 July 2013 - 30 June 2014

PRIORITIES of COST Action TD1105 EuNetAir

Michele Penza

Function in the Action: Action Chair

ENEA - Brindisi, Italy

ESF provides the COST Office

OUTLINE

- WG1 PRIORITIES: Sensor Materials and Nanotechnology
- WG2 PRIORITIES: Sensors, Devices and Systems for AQC
- WG3 PRIORITIES: Environmental Measurements and Air-Pollution Modelling
- WG4 PRIORITIES: Protocols and Standardisation Methods
- SIG1-SIG4 PRIORITIES:
 - ✓ SIG1: Network of Spin-offs
 - ✓ SIG2: Smart Sensors for Urban Air Monitoring in Cities
 - ✓ SIG3: Guidelines for Best Coupling Air-Pollutant & Transducer
 - ✓ SIG4: Expert Comments for Revision of Air Quality Directive

WG1 PRIORITIES: Sensor Materials and Nanotechnology

WG1-Leader:	 Prof. Juan Ramon Morante, IREC, Barcelona, Spain Prof. Jyrki Lappalainen, Oulu University, Finland (<i>Rome and Cambridge Meeting WG1 Chair</i>) 	
WG1 Compositi	on: 3 Sub-WG Leaders and 30 Members	
PRIORITY #1:	<u>Metal Oxides (MOX)</u> : Thin Films, Nanoparticles, Nanowires, Nanotubes, Nanoneedles, Nanoporous Forms of Materials (ZnO, SnO ₂ , WO ₃ , TiO ₂ , InO _x , NiO, and magnetic materials Fe_3O_4 , doped dielectrics BaSrTiO ₃ , etc.)	
PRIORITY #2:	Carbon Nano MATerials (CNMAT): Nanotubes, Nanoparticles, Graphene, 1D and 2D-nanostructures and their functionalization and doping	
PRIORITY #3:	Molecular, Organic/Inorganic Materials: Heterostructures (semiconductors, polymers) and Schottky junctions	
PRIORITY #4:	 TY #4: Processing of low-cost sensors on flexible substrates: Printing techniques, inkjet printing, spin coating, droplet casting, etc. Template assisted growth of nanostructures 	
PRIORITY #5:	Other sensitive materials: biomaterials, enzymes, antibodies, etc.	
PRIORITY #6:	Chemical modifications of the sensor materials with tuned properties to address selectivity and specific applications	
PRIORITY #7:	Combination of different approaches and defining the state-of-art of the best available technologies, for example, to realize smart sensor structures	

WG2 PRIORITIES: Sensors Devices and Sensor-Systems for AQC

	WG2-Leader:		Prof. Andreas Schuetze, Saarland University, Germany	
WG2 Composition:		ition:	4 Sub-WG Leaders and 45 Members	
F	PRIORITY #1:	 ORITY #1: Versatile μ-transducers for integration of various nanomaterials: ✓ Allow application specific adaptation and low cost ✓ Low power (down to μW range for single nanowire) 		
F	PRIORITY #2:	 Dynamic operation of Sensors to gain more than one signal from a single sensor for higher selectivity and stability as well possible self-monitoring at the sensor module level: ✓ Well-know but not yet standard: temperature cycling, Electrical Impedance Spectroscopy (EIS) ✓ New methods: RF, optical, excitation (gas sensitive solar cell), pulsed polarization, mass and dissipation in Quartz Crystal Microbalance (QCM) ✓ Modelling of interaction of sensing layer and gas/dust/aerosol 		
F	PRIORITY #3:	Selective filters integrated in sensors or sensor modules		
F	PRIORITY #4:	Dosimeter approach: integrating sensor response		
F	PRIORITY #5:	Nanoparticle detection for dust and aerosols		
F	PRIORITY #6:	Intelligent Sensor Modules for NO _x , O ₃ , NH ₃ , H ₂ S, SO ₂ , VOC: ✓ Electronics combined with sensor elements		
F	PRIORITY #7:	 Intelligent ✓ Data predistribut ✓ Energy 	Sensor Nodes and heterogeneous networks: -processing and processing (in node and/or in network: parallel and ed computing) efficient communication	

WG3 PRIORITIES: Environmental Measurements and Air-Pollution Modelling

WG3-Leader:		Prof. Ole Hertel, Aarhus University, Denmark	
WG3 Composition:		3 Sub-WG Leaders and 40 Members	
PRIORITY #1:	 Environm ✓ Various senson ✓ Senson ✓ Senson CO₂ en indoor ✓ Wireles 	ental Measurements: s portable sensor-systems to be explored as <i>personal sensors</i> and <i>wearable</i> s in the life of every day (e.g., bikes, pedestrians, cars, smart cities, etc.) s for air quality monitoring at outdoor applications s for air quality monitoring at indoor applications (e.g., green buildings, low nissions, offices, schools, air-ventilation systems, HVAC devices, open spaces, energy efficiency, etc.) ss sensors and wireless sensor networks	
PRIORITY #2:	Air Qualit ✓ Air-pol ✓ Chemi	y Modelling: ution dispersion modelling at local, urban, regional and global range cal weather forecasting (gases, vapors and particulate matter)	
PRIORITY #3:	 Synergist ✓ Smoke ✓ Allerge ✓ Airborn ✓ Fungal ✓ Airborn ✓ Long-ra ✓ Pestici ✓ Radon ✓ Toxic g 	ic Negative Health Effects of Human Exposure to Air-Pollution: from domestic wood stoves nic pollen from trees, grasses and new invasive species e allergenic material (skin tissue, hair, etc.) released from livestock spores from agriculture and other sectors e PM natural sources (sea spray, soil dust) ange transported organic & inorganic PM including agricultural emissions des applied in Europe farming & ElectroMagnetic Field (EMF) in domestic buildings ases and VOCs as air-pollutants at indoor and outdoor level	

WG4 PRIORITIES: Protocols and Standardisation Methods

WG4-Leader:		Prof. Ingrid Bryntse, SenseAir SA, Delsbo, Sweden	
WG4 Composition:		3 Sub-WG Leaders and 25 Members	
PRIORITY #1:	Odorants: ✓ H ₂ S and organic thiols (mercaptans) ✓ Odour monitoring		
PRIORITY #2:	 Particulate Matter (PM): ✓ PM₁₀, PM_{2.5}, Ultrafine PM ✓ Black Carbon (BC) 		
PRIORITY #3:	 VOC, Indoor Air: ✓ CH₂O methanal (formaldehyde) ✓ C₆H₆ (Benzene) and other BTX (Benzene, Toluene, Xylene) 		
PRIORITY #4:	 Inorganic Gases: NO₂ (nitrogen dioxide) & O₃ (ozone), analysed simultaneously CO₂ (carbon dioxide) (ventilation indicator and greenhouse gas) 		
PRIORITY #5:	 Aiming at Low-cost Sensors: ✓ Small sensor with simple PCB: €100 (OEM manufacturer price to a customer which use in their system) ✓ Sensor modules: €300 		
PRIORITY #6:	Labora	tory and Field Testing at National Accredited Test Laboratories	

SIG1 PRIORITIES: Network of Spin-offs

	Dr. Marco Alvisi, ENEA, Brindisi, Italy	
n: 1	1 SIG1 Deputy and 20 Members	
Chemic	al and radiation environmental monitoring	
Ozone sensors, NO_x , CO and SO_2 sensors for automotive applications		
Improve microel high thr	Improve stability of the available sensors, compatibility with CMOS microelectronics, soft CMOS post-processing methods for reproducible high throughput manufacturing	
Toxic and explosive (hydrogen) gas leakage		
Biosensor based on enzyme for dioxin and Persistent Organic Pollutants (POP), work on POP detection		
VOC detection developing sensors modules and sensor systems		
Indoor a	air quality control, leak detection	
Odour monitoring system (odour-telephone)		
Enhancement of the sensing properties by introducing functional receptive groups		
Couplin	g different transduction modes in the same device	
	n: 1 Chemic Ozone 1 Improve microel high thr Toxic an Biosens (POP), VOC de Indoor a Odour r Enhanc groups	

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

SIG2 PRIORITIES: Smart Sensors for Urban Air Monitoring in Cities

SIG2-Leader: SIG2 Composition PRIORITY #1: Di ✓ ✓			Prof. Rod Jones, University of Cambridge, Cambridge, UK 1 SIG2 Deputy and 40 Members cussion of «Smart»: Self-monitoring: e.g., fault detection Clever design/manufacturing: e.g., self-calibrating. <u>Ideally both needed</u> . Smart use of «stupid» (not educated) sensors	
		ion:		
		Discus ✓ Self- ✓ Clev ✓ Sma		
	 PRIORITY #2: Sensor Systems: ✓ sensors + analysis/correction + archiving + data mining + mappinterpretation/dissemination ✓ Deliver answers to: General public (low pollution routes/traffic flow) Legislature/compliance Health impacts community Activity goes way beyond simple sensor development 		r Systems : sors + analysis/correction + archiving + data mining + mapping + pretation/dissemination ver answers to: General public (low pollution routes/traffic flow) Legislature/compliance Health impacts community Activity goes way beyond <i>simple</i> sensor development	
	PRIORITY #3:	 Other Issues: ✓ Transferring A/Q knowledge from one environment to another (do we have sensor networks everywhere ? Continuously deployed ?) ✓ Use of modelling ? Philosophy of testing models, combining model/sensor network outputs - Data assimilation - Applicability ✓ High cross-disciplinary, are all other communities represented here ? 		
	PRIORITY #4:	Roadm	ap issues to be discussed more in SIG2	

SIG3 PRIORITIES: Guidelines for Best Coupling Air-Pollutant and Transducer

SIG3-Leader:	 Prof. Giorgio Sberveglieri, University of Brescia, Brescia, Italy Prof. Eduard Llobet, Universitat Roviri I Virgili, Tarragona, Spain (<i>Rome and Cambridge Meeting SIG3 Chair</i>) 	
SIG3 Compositio	n: 1 SIG3 Deputy and 20 Members	
PRIORITY #1:	Identify which are the physical parameters being affected by gas/material interaction (for a rationale design of the transducer)	
PRIORITY #2:	Continuous measurements versus exposure/recovery measurements	
PRIORITY #3:	Study of the best coupling of the air pollutants associated to a given transducer	
PRIORITY #4:	 Case-studies: ✓ Common evaluation protocols for sensors (<i>sensor benchmarking</i>) ✓ Study the combination of <i>different transduction principles</i> to enhance selectivity ✓ Selection of <i>target applications</i> so specifications (i.e., sensitivity, selectivity, interference rejection, use of sample pre-treatment, response time, etc.) can be set 	

SIG4 PRIOR	cpert Comments for the Revision of the Air Quality Directive			
SIG4-Leader	r:	Dr. Thomas Kuhlbusch, IUTA eV, Duisburg, Germany		
SIG4 Composition:		1 SIG4 Deputy and 30 Members		
PRIORITY #1: Sense metho qualit		r quality demands may be lower than those those of reference ds. Nevertheless, characterization is needed and specific data y requirements have to be set		
PRIORITY #2	2: Mode by ser	Modelling of urban air pollution and population exposure can be improved by sensors due to higher spatial resolution		
PRIORITY #3	3: Ammo netwo traffic	Ammonia being a precursor for PM might be worth more attention: sensor networks could help in identifying sources; increasing controbutions from traffic and other sources in particular situations (e.g., garbage boxes)		
PRIORITY #4	4: Review be targ	Review of AQD implementation problems and proposals how these could be targeted by application of sensors		
PRIORITY #	5: Recor ✓ Nev ✓ Dat ✓ Use ✓ Spe	 Recommendations on: ✓ New Metrics (e.g., Black Carbon) ✓ Data Quality Requirements ✓ Use for Model Improvements ✓ Specific Research Needed 		
PRIORITY #0	6: Guide to AQI	lines on <i>Data Quality Requirements</i> for sensors to be used in relation D (e.g, support indicative screening or complementary modeling)		
PRIORITY #7	7: SIG4 a	addressing AQD revision planned for 2018 !		

Challenges addressed by Action TD1105

- Nanomaterials for AQC sensors
- Low-cost Gas Sensors
- Low-power Sensor-Systems
- Wireless Technology (Environmental Sensors Network)
- Air Quality Modelling
- Environmental Measurements
- Standards and Protocols

propean Network on New Sensing Technologies for A

Pollution Control and Environmental Sustainability - EuNetAi

200

150

• 01.03.2009-30.06.2010; n=*

0.9833x + 1.9044 $R^2 = 0.9414$

Contact Details

- CSO Approval:
- Kick-off Meeting:
- Start of Grant:
- End of Grant:

01	Dec. 2011
16	May 2012
01	July 2012
30	June 2016

www.cost.eunetair.it

MC Chaire	Dr. Michele Penza, ENEA, IT
IVIC CIIdil.	michele.penza@enea.it
	Prof. Anita Lloyd Spetz
MC Vice Chair:	Linkoping University, SE
	<u>spetz@ifm.liu.se</u>
	Dr. Corinna Hahn
Grant Holder:	Eurice GmbH, DE
	<u>c.hahn@eurice.eu</u>
Scientific Secretary:	Dr. Annamaria Demarinis Loiotile
Scientinic Secretary.	annamaria.demarinis@uniba.it
Science Officer:	Dr. Deniz Karaca
Science Officer.	deniz.karaca@cost.eu
Administrative	Dr. Andrea Tortajada
Officer:	andrea.tortajada@cost.eu
	Prof. Kostantinos Kourtidis (GR)
Rapporteur ESSEIVI:	kourtidi@env.duth.gr
	Prof. Joaquim Manuel Vieira (PT)
Rapporteur MPNS:	jvieira@cv.ua.pt
Demoster CLACT	Prof. Antonio Lagana (IT)
kapporteur CIVIST:	lagana05@gmail.com

http://www.cost.eu/domains_actions/essem/Actions/TD1105