European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir **COST Action TD1105** 2nd International Workshop *EuNetAir* on New Sensing Technologies for Indoor and Outdoor Air Quality Control ENEA - Brindisi Research Center, Brindisi, Italy, 25 - 26 March 2014 Electrophoretic Gold Nanoparticles Deposition On **Carbon Nanotubes For NO₂ Sensors** Elena Dilonardo^{1*}, Michele Penza², Marco Alvisi², Domenico Suriano², Riccardo Rossi², Cinzia di Franco³, Francesco Palmisano¹, Luisa Torsi¹, Nicola Cioffi¹ ¹Department of Chemistry, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona 4 - 70126, Bari , Italy.

> ²ENEA, Technical Unit for Materials Technologies - Brindisi Research Center, PO Box 51 Br4; I-72100 Brindisi, Italy. ip. Interuniversitario Fisica "M. Merlin" Università degli Studi Di Bari 'Aldo Moro' Via Amendola, 173, 70126 Bari , Italy. *elena.dilonardo@uniba.it

Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile

EUROPERN_ ESF provides the COST Office

Source and Effects of NO₂: Why NO₂ Monitoring?

Strict emission standards and the increasing awareness have induced the growth of sensor market.

LIMITATIONS: Current gas sensors address only a minimal set of sensing needs.

Sensitivity/Detection Limit

COOPERATION IN SCIENCE AND TECHNOLOGY

Selectivity

Kinetic response

E. Dilonardo et al.

- Temperature range
- Stability and Reproducibility
- Life Time

2nd International Workshop EuNetAir

Material Selection for Gas Sensing: CNTs

Advantages and Disadvantages of Existing Gas Sensors

SENSOR	SIZE	POWER	SELECTIVITY	SENSITIVITY	STABILITY
Analytical equipment	8	8	0	0	٢
Electrochemical sensors	©	0	8	0	٢
Catalytic bead sensors	©	ଞ	8	8	٢
Metal oxide semiconductors	٢	ଞ	8	8	٢
Conductive polymer sensors	0	0	8	٢	8

✓ CARBON NANOTUBE as sensing material

- © Nanostructured material: high surface area
- © High selective

© High adsorption capacity

© Stable physically and chemically

© Large change in electrical properties

✓ FUNCTIONALIZATION WITH METAL NPs TO IMPROVE GAS SENSING PROPERTIES

FUNCTIONALIZED CNTs (p-type): MODEL OF CATALYTICALY-INDUCED CHARGE TRANSFER

Interaction with gas molecules results in an electronic charge transfer between the molecule and the CNT-NP sensor, which affects the position of the Fermi energy and, hence, the conductivity of the detection unit.

SCIENCE AND TECHNOLOGY

Electron donating gases (NH₃, CO)

-Resistance ↑ -Conductivity ↓

EUROPEAN COOPERATION

E. Dilonardo et al.

2nd International Workshop EuNetAir

Experimental Set-Up

CNTs synthesis

CNTs GROWTH By CVD TECHNOLOGY

Substrate: film cobalt (Co) nanoclusters, 6 nm thick 1^{st} step: H₂ plasma pretreatment @ 550°C 2^{nd} step: H₂ + C₂H₄ @ 550°C

M. Penza et al., Sens. Actuators B 144 (2010) 387-394

Au-NPs electrochemical synthesis Sacrificial Anode Electrolvsis (SAE)

Characterization

Morphology

C1s(%) Au4f (%) O1s(%) CNTs as received 95.0 ± 0.5 5.0 ± 0.5 Au NPs/CNTs t:90s 94.4 ± 0.5 0.3 ± 0.2 5.3 ± 0.5 Au NPs/CNTs t:300s 92.0 ± 0.5 0.5 ± 0.2 7.5 ± 0.5 Au NPs/CNTs t:600s 91.2 ± 0.5 1.1 ± 0.2 7.8 ± 0.5

> Deposition of Au NPs on CNTs : Au NPs decorate CNTs.

≻The content of deposited Au NPs increases increasing the process time.

Shift of Au4f B.E. to higher eV increasing the deposition process time (*increase of NPs cluster dimension*)

 EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

 E. Dilonardo et al.
 2nd International Workshop EuNetAir

GAS SENSING FUNCTIONAL TESTS

E. Dilonardo et al. 2nd International Workshop EuNetAir

M. Penza et al., Sens. Actuators B 135 (2008) 289-297

NO₂ GAS SENSING

Gas: NO_2 - Carrier Gas: Air $t_{exposure}$: 10 min – $t_{recovery}$: 60 min (in Air) $> NO_2$ concentration effect [range: 10-0.1 ppm] $> T_{process}$ effect [range 100-200°C]

✓ NO₂ MEAN SESNITIVITY IS HIGHER FOR Au NPs DECORATED CNTs AT ALL INVESTIGATED T
 ✓ AuNPs DECORATED CNTs ARE STABLE IN THE INVESTIGATED RANGE OF T
 ✓ MAXIMUM NO₂ MEAN SENSISTIVITY @ T= 150°C

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

E. Dilonardo et al.

2nd International Workshop EuNetAir

INTERFERING GASES

1ppm

300

240

5ppm

180

CH₄ (7000-300ppm) @ T =150°C VERY LOW RESPONSE: Δ**R**/**R**_i (%) < 0.5 % □ NH₃ (1000-5ppm) @ T =150°C VERY LOW RESPONSE: ΔR/R; (%) < 0.5 %

 \checkmark High sensitivity for NO₂ also in contemporary presence of intering gases

E. Dilonardo et al.

8ppm

120

-0,50

60

2nd International Workshop EuNetAir

360

420

time (min)

CONCLUSION

✓A tunable loading of Au NPs with uniform dimension is efficiently deposited directly on the surface of CNTs-based sensor device by electrophoretic process.

✓ Au NPs functionalized CNTs-based gas sensor have an higher thermal stability than un-functionalized one.

✓ Au NPs functionalized CNTs-based gas sensor have an higher NO₂ sensitivity and selectivity than un-functionalized one, revealing [NO₂] in sub-ppm range.

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

FUTURE PROSPECTIVES

✓ Investigation of other interfering gases.

✓ Optimization of electrophoretic deposition conditions.

✓ Electrophoretic functionalization of CNTs-based gas sensor devices with other metals and/or metal oxides nanoparticles.

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

E. Dilonardo et al. 2nd International Workshop EuNetAir

THANK YOU !