

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*COST Action TD1105

2nd International Workshop *EuNetAir* on

New Sensing Technologies for Indoor and Outdoor Air Quality Control

ENEA - Brindisi Research Center, Brindisi, Italy, 25 - 26 March 2014

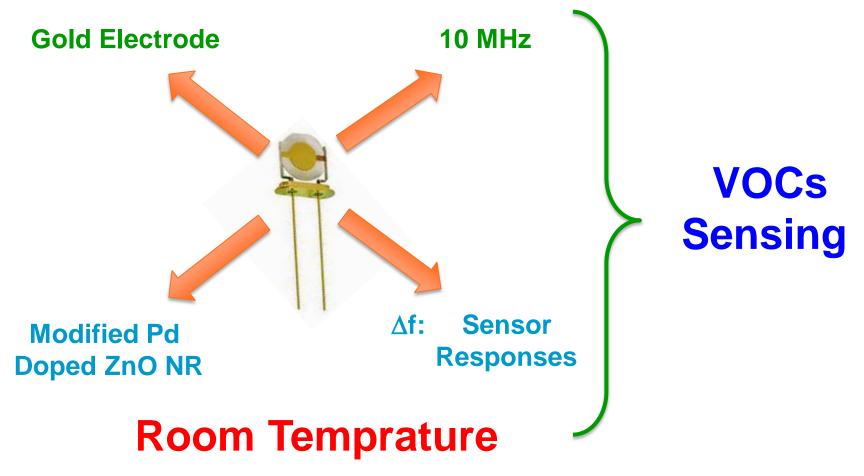
Pd-Doped ZnO Nanorods for VOCs Sensing

COST is supported by the EU Framework Programme

Sadullah ÖZTÜRK

Function in the Action (Participant) / sadullahozturk@gmail.com

Gebze Institute of Technology/TURKEY

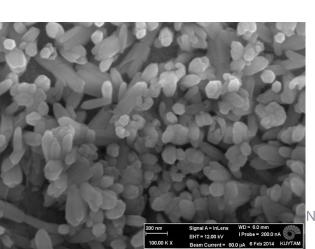

MOTIVATION

Zinc Oxide (ZnO)

- Native n-type semiconductors
- Piezoelectric properties
- Spintronics applications (:Mn, Co, Fe,...)
- *Solution, **Vapor and ***Lithography for nanostructured ZnO
- 0D, 1D, 2D and 3D forms
 - Nanorods,
 - Nanowires
 - Nanotubes

Sensing Materials and Transducers

Test Samples and Analytes


- Palladium (Pd) doped ZnO nanorods on gold electroded QCM transducers (10 MHz)
- Nanorods were fabricated on both sides of QCM
- Solution based process for doped undoped ZnO nanorods

Doping Concentrations of ZnO nanorods

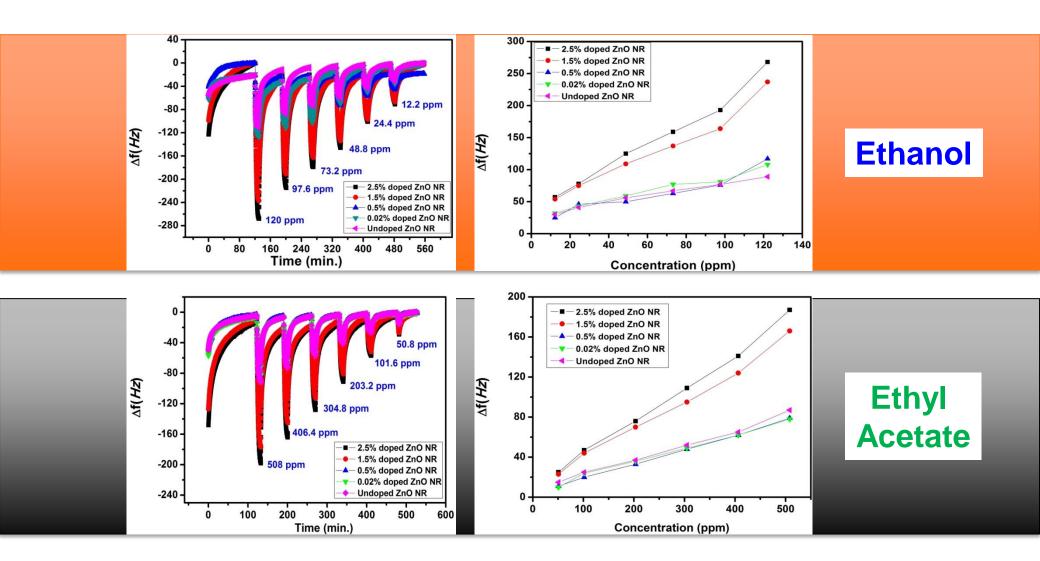
0% 0.02% 0.5% 1.5% 2.5%

Analytes

- Alcohols
 - Ethanol
 - Methanol
 - Isopropyl Alcohol
- Aromatics
 - Xylene
 - Toluene
- Ester
 - Ethyl Acetate
- Ketone
 - Acetone
- Chlorinated
 - Chloroform

Test Conditions

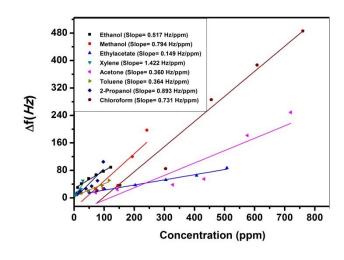
Test Ambient: Dry Air

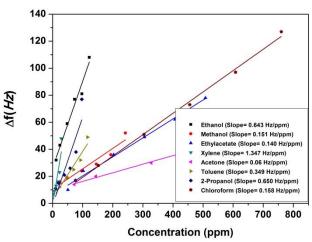

Total Flow: 1000 ml/min

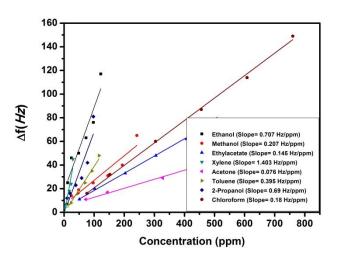
Test Temperature: 25°C

Analyte	TLV*	Density	Test Concentrations
	(ppm)	(gr/ml)	(ppm)
Ethanol	1000	0.8115	122-12.2
Methanol	200	0.7919	242-24.2
Isopropyl Alcohol	400	0.783	97-9.7
EthylAcetate	400	0.90	508-50.8
m-Xylene	100	0.864	29-2.9
Toluene	50	0.862	116-11.6
Acetone	500	0.786	720-72
Chloroform	10	1.481	760 -76
*: Threshold Limit Values			

Result and Discussions

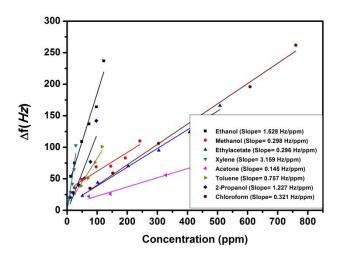


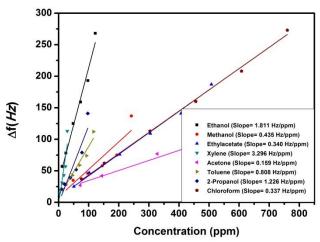


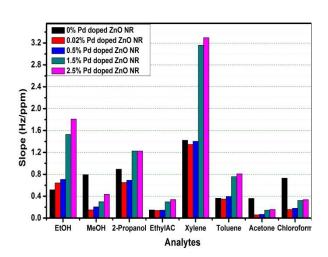

Undoped ZnO NRs

0.02% doped ZnO NRs

0.05% doped ZnO NRs







1.5% doped ZnO NRs

2.5% doped ZnO NRs

CONCLUSIONS

- NRs on QCM Transducers,
- Metal doping of metal oxide NRs,
- VOCs sensing,
- Responses inreased with doping concentrations,
- Low operation temperature;
- Low selectivity,

ACKNOWLEDGEMENT

- The Scientific and Technological Research Council of Turkey (TUBITAK).
 Project title: "Development of Automotive Gas Sensors Based on Nano-Metal-Oxide Semiconductor with increased Selectivity, Sensitivity and Stability"
- COST Action TD1105 EuNetAir European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability by a Short Term Scientific Mission Year-2 (STSM-TD1105-16434, from 03-03-2014 to 28-03-2014): "Functionalization of ZnO Nanorods With Metals and Metal oxides For Gas Sensing Applications".

Ente per le Nuove tecnologie, l'Energia e l'Ambiente

